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METHOD IN
PROCESSOR
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FIG. 7
SM3 FOUR MESSAGE
EXPANSION INITIATION
OPERATION
127 95 63 31 0
FIRST SOURCE
PACKED DATA
Wiss Wiio Wi W, OPERAND
—— 752
127 95 63 31 0 SECOND
SOURCE
PACKED DATA
3 Wj+15 Wj+14 Wj+13 OPERAND
—— 754
EXECUTION UNIT
724
127 95 63 31 0
THIRD SOURCE
PACKED DATA
Wj+10 Wj+g Wj+3 Wj+7 OPERAND
—— 756
127 95 63 31 0
RESULT
PACKED DATA
Wrmp3 Wrmp2 Wrmp1 Wrmpo OPERAND

758




U.S. Patent Apr. 19,2016 Sheet 8 of 16 US 9,317,719 B2
FIG. 8
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1
SM3 HASH ALGORITHM ACCELERATION
PROCESSORS, METHODS, SYSTEMS, AND
INSTRUCTIONS

BACKGROUND

1. Technical Field

Embodiments described herein relate to processors. In par-
ticular, embodiments described herein relate to the evaluation
of hash algorithms with processors.

2. Background Information

Hash functions or algorithms are a type of cryptographic
algorithm that are widely used in computer systems and other
electronic devices. The hash algorithms generally take a mes-
sage as an input, generate a corresponding hash value or
digest by applying the hash function to the message, and
output the hash value or digest. Typically, the same hash value
should be generated if the same hash function is evaluated
with the same message. Such hash algorithms are used for
various purposes, such as for verification (e.g., verifying the
integrity of files, data, or messages), identification (e.g., iden-
tifying files, data, or messages), authentication (e.g., gener-
ating message authentication codes), generating digital sig-
natures, generating pseudorandom numbers, and the like. As
one illustrative example, a hash function may be used to
generate a hash value for a given message. At a later time, a
hash value may be recomputed for the given message using
the same hash function. If the hash values are identical, then
it can be assumed that the message hasn’t been changed. In
contrast, if the hash values are different, then it can be
assumed that the message has been changed.

One known type of hashing algorithm is the SM3 hash
function. The SM3 hash algorithm has been published by the
Chinese Commercial Cryptography Association Office and
approved by the Chinese government. The SM3 hash algo-
rithm has been specified as the hashing algorithm for the
TCM (Trusted Computing Module) by the China Information
Security Standardization Technical Committee (TC260) ini-
tiative. An English language description of the SM3 hash
function has been published as the Internet Engineering Task
Force (IETF) Internet-Draft entitled “SM3 Hash Function,”
by S. Shen and X. Lee, on Oct. 24, 2011.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by referring to the
following description and accompanying drawings that are
used to illustrate embodiments. In the drawings:

FIG. 1 is a block diagram of an instruction set of a proces-
sor that includes one or more SM3 hash algorithm accelera-
tion instructions.

FIG. 2 illustrates the compression function of the SM3
hash algorithm.

FIG. 3 is a block diagram of an embodiment of a processor
that is operable to perform an embodiment of an SM3 two
round at least four (or in some embodiments eight) state word
update instruction.

FIG. 4 is a block flow diagram of an embodiment of a
method of performing an embodiment of an SM3 two round
at least four (or in some embodiments eight) state word
update instruction.

FIG. 5 is a block diagram illustrating an embodiment of an
SM3 two round eight state word update operation.

FIG. 6 is a block diagram illustrating an embodiment of an
SM3 two round four remaining state word update operation.

FIG. 7 is a block diagram illustrating an embodiment of an
SM3 four message expansion initiation operation.
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FIG. 8 is a block diagram illustrating an embodiment of an
SM3 four message expansion completion operation.

FIG. 9A is a block diagram illustrating an embodiment of
an in-order pipeline and an embodiment of a register renam-
ing out-of-order issue/execution pipeline.

FIG. 9B is a block diagram of an embodiment of processor
core including a front end unit coupled to an execution engine
unit and both coupled to a memory unit.

FIG. 10A is a block diagram of an embodiment of a single
processor core, along with its connection to the on-die inter-
connect network, and with its local subset of the Level 2 (L2)
cache.

FIG. 10B is a block diagram of an embodiment of an
expanded view of part of the processor core of FIG. 10A.

FIG. 11 is a block diagram of an embodiment of a proces-
sor that may have more than one core, may have an integrated
memory controller, and may have integrated graphics.

FIG. 12 is a block diagram of a first embodiment of a
computer architecture.

FIG. 13 is a block diagram of a second embodiment of a
computer architecture.

FIG. 14 is a block diagram of a third embodiment of a
computer architecture.

FIG. 15 is a block diagram of an embodiment of a system-
on-a-chip architecture.

FIG. 16 is a block diagram of use of a software instruction
converter to convert binary instructions in a source instruction
set to binary instructions in a target instruction set, according
to embodiments of the invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Disclosed herein are SM3 hash algorithm acceleration
instructions, processors to execute the instructions, methods
performed by the processors when processing or executing
the instructions, and systems incorporating one or more pro-
cessors to process or execute the instructions. In the following
description, numerous specific details are set forth (e.g., spe-
cific instruction operations, data formats, arrangement of data
elements within operands, processor configurations, microar-
chitectural details, sequences of operations, etc.). However,
embodiments may be practiced without these specific details.
In other instances, well-known circuits, structures and tech-
niques have not been shown in detail to avoid obscuring the
understanding of the description.

FIG. 1 is a block diagram of an instruction set 100 of a
processor that includes one or more SM3 hash algorithm
acceleration instructions 102. The SM3 acceleration instruc-
tion(s) may help to accelerate implementations of the SM3
hash algorithm. The instruction set is part of the instruction
set architecture (ISA) of the processor and includes the native
instructions that the processor is operative to perform. The
instructions of the instruction set (e.g., including the SM3
acceleration instructions) represent macroinstructions,
assembly language instructions, or machine-level instruc-
tions that are provided to the processor for execution. These
instructions are contrasted to microinstructions, micro-ops,
or other instructions that result from decoding the instructions
of the instruction set.

In some embodiments, the SM3 acceleration instruction(s)
102 may include an SM3 two round at least four (or in some
embodiments eight) state word update instruction 104. When
performed, the SM3 two round state word update instruction
103 may be operable to cause the processor to update at least
four (or in some embodiments eight) of the state words of the
SM3 hash algorithm by two rounds.
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In embodiments where the instruction 104 is optionally an
SM3 two round four state word update instruction 104, the
instructions 102 may optionally include an SM3 two round
four remaining state word update instruction 106. When per-
formed, the instruction 106 may be operable to cause the
processor to update a remaining four of the eight state words
(e.g., the four not updated by the instruction 104). Alterna-
tively, these remaining four state words may optionally
instead be updated by software (e.g., through a sequence of
conventional instructions).

In some embodiments, the instruction(s) 102 may option-
ally include one or more instructions to assist with message
scheduling, although this is not required. For example, in
some embodiments, the instruction(s) 102 may optionally
include an SM3 four message expansion initiation instruction
108. When performed, the instruction 108 may be operable to
cause the processor to initiate and/or partially perform the
expansion of four messages. In some embodiments, the
instruction(s) 102 may optionally include an SM3 four mes-
sage expansion completion instruction 110 designed to work
with the initiation instruction 108. When performed, the
instruction 110 may be operable to cause the processor to
finish or complete the expansion of the four messages.

As shown, in some embodiments, the instruction set 100
may include four different SM3 hash function acceleration
instructions 102. However, in other embodiments, only any
single one, or a subset of any one or more of these instructions
102, may optionally be included in the instruction set 100.
Although including all of the four instructions may tend to
provide the greatest amount of acceleration, some accelera-
tion may be achieved by including any one or more of these
instructions.

FIG. 2 illustrates the compression function 212 of'the SM3
hash algorithm suitable for embodiments. The SM3 hash
algorithm accepts a message as input. The message may
represent a bit string of arbitrary length. The SM3 hash algo-
rithm performs a number of operations using the input mes-
sage and generates a hash value or digest having a length of
256-bits after padding and iterative compression.

Initially, the 256-bit state value V(i) is partitioned into eight
32-bit state words A, B, C, D, E, F, G, and H. The initial state
value V(0) for the first iteration is a constant defined by the
SM3 hash algorithm. The state words A through H are speci-
fied in “Big Endian” format according to the algorithm but
their format in an implementation may vary if desired.

An iterative procedure is then performed on the sequence
of'blocks. The SM3 hash algorithm includes sixty-four itera-
tions or “rounds” (i.e., from j ranging from 0to 63). As shown,
a single round 213 includes a number of different operations.
The leftward pointing arrow symbol (<—) represents storing,
assigning, or equating the value or parameter on the right to
the value or parameter on the left. The symbol “<<<” repre-
sents a rotate operation. The symbol of the encircled plus sign
(&) represents a logical exclusive OR (XOR) operation. T, is
a constant having a value as specified in the SM3 hash func-
tion that depends on the iteration (i.e., the value of j). For
example, T, may have value. The variables SS1, SS2, TT1,
and TT2 are internal 79cc4519 for O<j<15 and the value
7a879d8a for 16=<j<63 intermediate values used in the itera-
tions.

FF, is a Boolean function which varies with round number
(j) according to Equation 1:

FF,(X,Y¥,Z)=X XOR YXOR Z(0<j<15); or

=(X AND ¥) OR (X AND Z) OR (Y AND 2)

(16=j=63) Equation 1
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GG; is a Boolean function which varies with round number
(j) according to Equation 2:

GG,(X,¥,Z)=X XOR Y XOR Z(0=/<15); or

=(X AND ) OR (NOT X AND Z)(16s/<63) Equation 2

P, is a permutation function in compression function
according to Equation 3:

Po(X)=X XOR(X<<<9)XOR(X<<<17)

Notice that the term W, is added to the evaluation of the
Boolean function GG,. Also, the term W', is added to the
evaluation of the Boolean function FF;. The terms W, and W',
represent message terms, message inputs, or simply mes-
sages. For iterations 0 to 15, the terms W, to W, 5 are obtained
from the 512-bit block being compressed. In particular, the
512-bit message block being compressed is divided or parti-
tioned into sixteen 32-bit words referenced in big-endian
format as W, to W 5. The remaining messages W, and W', are
calculated during a message extension or message expansion
portion of the SM3 hash algorithm.

The W, messages for iterations 16 to 67 may be calculated
according to the following Equation 4:

Equation 3

W,=P(W,_15 XOR W¥,_g XOR(W,_3<<<15))XOR

(W;_13<<<T)XOR W,_g¢ Equation 4

In Equation 4, P, (X) is a permutation function for message
expansion that is defined by the following Equation 5:

P (X)=X XOR (X< <<15)XOR(X<<<23) Equation 5

The W, messages for iterations 16 to 67 may be calculated
according to Equation 4 with the permutation function P,
according to Bquation 5. Notice that the calculation of a W,
message for a given round (e.g., round j) depend on messages
from earlier rounds. In particular, as can be readily seen in
Equation 4, the W, message for a given round (e.g., round j)
depends on the prior round messages W, 5, W,_,5, W, ,
W,_sand W, 5. W, is the message from three rounds back
relative to round j, W,_, ; is the message from sixteen rounds
back relative to round j, and so on.

The W', messages may be calculated or derived from the W,
messages according to the following Equation 6:

W' =XOR W4 Equation 6

Notice that the W', message depends on the W, message
from the same round as well as on the W, , message from four
rounds ahead. Since W, to W ; are divided or obtained from
the 512-bit message block being compressed, messages W',
to W', may be determined using Equation 6 based on the
initially known messages W, to W,5. The remaining mes-
sages W', , to W'¢; may be determined from messages W, to
W, which may be calculated using Equations 4-5. Notice
that W, to W, may be calculated, even though they are not
input directly into the compression function, but are needed to
calculate W'g, to W'es.

One challenge is that implementing the SM3 hash algo-
rithm in processors generally tends to be computationally
intensive. For example, as can be readily seen from FIG. 2 and
Equations 1-3, updating the state words for each round
involves a large number of different operations. Specifically,
during each round a large number of XOR operation, rotate
operations, and other operations typically need to be per-
formed. In addition, there are a large number of rounds (e.g.,
64-rounds). Conventionally, without the SM3 hash algorithm
two round state word update instructions disclosed herein,
updating the state words by two rounds of the algorithm
generally tends to involve executing a large number of sepa-
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rate instructions. For example, conventionally it is possible
that a separate instruction may be used for each XOR opera-
tion, for each rotate operation, etc. Additional instructions
may also potentially be needed to move or rearrange data to
prepare it for the next round. As a result, the performance of
the rounds in software by separate more general-purpose
instructions tends to be poor. This fact, compounded with the
large number of rounds to be performed, generally tends to
make the implementation of the SM3 hash algorithm very
computationally intensive and/or take a significant amount of
time.

FIG. 3 is a block diagram of an embodiment of a processor
320thatis operable to perform an embodiment of an SM3 two
round at least four (or in some embodiments eight) state word
update instruction 304. In some embodiments, the processor
may be a general-purpose processor (e.g., a general-purpose
microprocessor of the type used in desktop, laptop, or other
computers). Alternatively, the processor may be a special-
purpose processor. Examples of suitable special-purpose pro-
cessors include, but are not limited to, network processors,
communications processors, cryptographic processors,
graphics processors, co-processors, embedded processors,
digital signal processors (DSPs), and controllers (e.g., micro-
controllers). The processor may be any of various complex
instruction set computing (CISC) processors, reduced
instruction set computing (RISC) processors, very long
instruction word (VLIW) processors, hybrids thereof, other
types of processors, or have a combination of such different
processors (e.g., in different cores).

During operation, the processor 320 may receive the
embodiment of the SM3 two round state word update instruc-
tion 304. For example, the instruction 304 may be received
from an instruction fetch unit, an instruction queue, or the
like. The instruction 304 may represent a macroinstruction,
assembly language instruction, machine code instruction, or
other instruction or control signal of an instruction set of the
processor.

In some embodiments, the instruction 304 may explicitly
specify (e.g., through one or more fields or a set of bits), or
otherwise indicate (e.g., implicitly indicate, etc.), one or more
source packed data operands 330. In some embodiments, the
one or more source packed data operands 330 may have eight
32-bit state words to be input to a current SM3 round (j) 331
(eg,A,B,C,D,E,F, G, H). Insome embodiments, the
one or more source packed data operands 330 may also have
message information 335 (e.g., a set of messages) sufficient to
evaluate the next two subsequent and sequential SM3 rounds
apportioned among any desired number of source operands
and in any desired order. As one example, this message infor-
mation may include the four messages W, W, |, W', W', ,.
As another example, this message information may include
the four messages W, W, W_,, W, Still other message
information is possible, as will be apparent to those skilled in
the arts and having the benefit of the present disclosure. These
state words and messages may be apportioned among any
desired number and size of one or more source operands and
may be in any desired order. The scope of the invention is not
particularly limited to the number of source packed data
operands used to provide the input data, the sizes thereof, or
to the arrangements of the data within the operands, although
certain efficiencies and/or advantages may be achieved
through certain arrangements of the data within the operands
from an overall algorithmic perspective (e.g., by reducing
operations to rearrange data elements for different iterations),
as will be appreciated by those skilled in the arts and having
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the benefit of the present disclosure. The specific examples
disclosed elsewhere herein are believed to be beneficial but
are certainly not required.

In some embodiments, the instruction may also specify or
otherwise indicate a round number (e.g., the current round j
ranging from 0 to 63), such as, for example, by a data element
in the one or more source packed data operands, a field of the
instruction 304 (e.g., an immediate), a value in a general-
purpose register (e.g., specified by or implicit to the instruc-
tion), or otherwise. In some embodiments, the instruction 304
may also explicitly specify (e.g., through one or more fields or
a set of bits), or otherwise indicate (e.g., implicitly indicate,
etc.), one or more destination storage locations where one or
more result packed data operands 336 are to be stored in
response to the instruction.

The processor 320 includes a set of packed data registers
328. Each of the packed data registers may represent an
on-die storage location that is operable to store packed data,
vector data, or SIMD data. The packed data registers may be
implemented in different ways in different microarchitec-
tures using well-known techniques and are not limited to any
particular type of circuit. Examples of suitable types of reg-
isters include, but are not limited to, dedicated physical reg-
isters, dynamically allocated physical registers using register
renaming, and combinations thereof.

As shown, in some embodiments, the one or more source
packed data operands 330 may optionally be stored in one or
more packed data registers 328. Similarly, in some embodi-
ments, the one or more result packed data operands 336 may
optionally be stored in one or more packed data registers 328.
Alternatively, memory locations, or other storage locations,
may be used for one or more of these operands. Moreover,
although the source operand(s) 330 and result operand(s) 336
are shown as being separate in the illustration, in some
embodiments, a packed data register or other storage location
used for a source operand may be reused for a result operand
(e.g., an instruction may implicitly indicate that a result
packed data operand is to be written over a specified source
packed data operand).

When one or more packed data registers are used to store
the one or more source packed data operands, they generally
need to be of sufficient size and/or number to store the asso-
ciated operands. Generally, either a relatively greater number
of smaller packed data registers may be used, or a relatively
lesser number of larger packed data registers may be used, or
a combination of both larger and smaller registers may be
used. As previously mentioned, in some embodiments, the
one or more source packed data operands 330 may have eight
32-bit state words of a current SM3 round 331 (e.g., A, B, C,,
D,, B, F,, G, H)). In embodiments, the one or more source
packed data operands 330 may also have message informa-
tion 335, such as four 32-bit messages (e.g., either W, W,

+15
W, W o0 W, W,,, W ,, W, Collectively, {his
includes a total of twelve 32-bit data elements and/or 384-bits
of input data.

In some embodiments, three 128-bit packed data registers
may be used to store this input data. In some embodiments,
128-bit packed data registers may be used even if a processor
has wider packed data registers (e.g., 256-bit registers), such
as, for example, to allow the instructions to be used on other
processors without such wider registers. In other embodi-
ments, one 256-bit register and one 128-bit register may be
used to store this input data. In other embodiments, two
128-bit packed data registers and two 64-bit packed data
registers may be used to store this input data. In still other
embodiments, six 64-bit packed data registers may be used to
store this input data. In still other embodiments, other com-
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binations of 256-bit, 128-bit, 64-bit, or other sized registers
(e.g., 32-bit, 512-bit, etc.) may optionally be used to store the
one or more source packed data operands. In cases where
relatively large numbers of registers are used (e.g., four to six
or more), rather than having the instruction specify all regis-
ters (e.g., thereby increasing the instruction length), one or
more registers may be specified and one or more sequential/
next registers may be implicit to the instruction (e.g., to an
opcode).

Referring again to FIG. 3, the processor includes a decode
unit or decoder 322. The decode unit may receive and decode
the instruction 304 and output one or more microinstructions,
micro-operations, micro-code entry points, decoded instruc-
tions or control signals, or other relatively lower-level instruc-
tions or control signals that reflect, represent, and/or are
derived from the instruction 304. The one or more lower-level
instructions or control signals may implement the higher-
level instruction 304 through one or more lower-level (e.g.,
circuit-level or hardware-level) operations. In some embodi-
ments, the decode unit may include one or more input struc-
tures (e.g., port(s), interconnect(s), an interface) to receive the
instruction, an instruction recognition and decode logic
coupled with the input structure to recognize and decode the
instruction, and one or more output structures (e.g., port(s),
interconnect(s), an interface) coupled with the instruction
recognition and decode logic to output the one or more cor-
responding lower level instructions or control signals. The
decode unit may be implemented using various different
mechanisms including, but not limited to, microcode read
only memories (ROMs), look-up tables, hardware implemen-
tations, programmable logic arrays (PLAs), and other mecha-
nisms used to implement decode units known in the art. In
some embodiments, instead of the instruction 304 being pro-
vided directly to the decode unit, it may be provided to an
instruction emulator, translator, morpher, interpreter, or other
instruction conversion module that may convert it into one or
more other instructions to be decoded.

Referring again to FIG. 3, an SM3 hash function two round
at least four state word update execution unit 324 is coupled
with the decode unit 322 and the packed data registers 328.
For simplicity, the unit 324 may also be referred to herein as
an SM3 execution unit, or simply as an execution unit. The
execution unit may receive the one or more decoded or oth-
erwise converted instructions or control signals that represent
and/or are derived from the instruction 304. The execution
unit may also receive the one or more source packed data
operand(s) 330 indicated by the instruction 304. The execu-
tion unit is operable in response to and/or as a result of the
instruction 304 (e.g., in response to one or more instructions
or control signals decoded from the instruction) to store the
one or more result packed data operand(s) 336 in one or more
corresponding destination storage location(s) indicated by
the instruction 304.

In some embodiments, the one or more result packed data
operand(s) 336 may have at least four two-round updated
32-bit state words updated by two SM3 rounds relative to a
given round corresponding to the one or more source packed
data operands 330. For example, in one embodiment, the
result operand(s) 336 may include A ,,, B;,,, B,,,,and T, ,
apportioned among any desired number of operands and in
any desired order. A_,, B,,,, E,,, and F,,, respectively, are
updated by two SM3 rounds relative to A, B,, B, and F,. In
some embodiments, the result operand(s) 336 may optionally
have at least eight 32-bit state words updated by the two SM3
rounds (e'g's 20 Bj+25 Cj+25 Dj+25 Ej+25 Fj+25 Q25 and Hj+2)
apportioned among any desired number of operands and in
any desired order, although this is not required. In some
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embodiments, the execution unit 324 in response to the
instruction 304 may store any of the results shown and
described for FIG. 5, including the described variations and
alternatives thereof;, although the scope of the invention is not
so limited. Advantageously, the SM3 two round state word
update instruction may significantly help to increase the
speed, efficiency, and/or performance of implementing the
SM3 message generation (e.g., by avoiding an otherwise high
instruction count and complexity through conventional soft-
ware approaches).

In some embodiments, the execution unit may perform all
operations of a round for each of the two rounds (e.g., the
operations shown for single round 213). Alternatively, certain
of these operations may optionally be omitted. For example,
in the case of a four state word update instruction, certain
operations that would be needed to generate the remaining
four state words may optionally be omitted (e.g., operations
to generate C,,,, D,,», G;,,, H;,, in the second round may
optionally be omitted). As another example, certain opera-
tions may optionally be performed outside of the confines of
the execution of the instruction/operation. For example,
A,;<<<12 may optionally be performed by a separate instruc-
tion, T,<<<j may optionally be performed by a separate
instruction, etc. Moreover, it is to be appreciated that the
particular illustrated operations shown for the round 213 need
not necessarily be performed for the rounds. For example,
certain optionally may optionally be implemented by one or
more computationally equivalent substitute operations. For
example, XORs could be implemented by a combination of
other Boolean operations, rotates could be implemented by
bit extraction operations, etc. It is to be appreciated that use of
the terms “two rounds,” “two round state word update instruc-
tions,” and like terms herein, encompass and allow for such
possibilities.

Collectively, the one or more result packed data operands
may include a total of either four 32-bit data elements or
128-bits (e.g., in the case of four state elements updated) or
eight 32-bit data elements or 256-bits (e.g., in the case of eight
state elements updated). In some embodiments, one 128-bit
packed data register may be used to store four 32-bit state
words updated by two rounds, or two 128-bit packed data
registers may be used to store eight 32-bit state words updated
by two rounds. In other embodiments, two 64-bit packed data
registers may be used to store four 32-bit state words updated
by two rounds, or four 64-bit packed data registers may be
used to store eight 32-bit state words updated by two rounds.
In still other embodiments, a 256-bit packed data register may
be used to store either four or eight 32-bit state words updated
by two rounds. In still other embodiments, other combina-
tions of 256-bit, 128-bit, 64-bit, or other sized registers (e.g.,
32-bit, 512-bit, etc.) may optionally be used to store the one or
more source packed data operands. Alternatively, memory
locations or other storage locations may optionally be used, if
desired. The scope of the invention is not particularly limited
to the number of result operands, the sizes thereof, or to the
arrangement of the data in the result operands, although cer-
tain efficiencies and/or advantages may be achieved through
certain arrangements of the data within the result operands
from an overall algorithmic perspective (e.g., by reducing
operations to rearrange data elements for different iterations),
as will be appreciated by those skilled in the arts and having
the benefit of the present disclosure. The specific examples
disclosed elsewhere herein are believed to be beneficial but
are certainly not required.

Referring again to FIG. 3, the execution unit 324 and/or the
processor 320 may include specific or particular logic (e.g.,
transistors, integrated circuitry, or other hardware potentially
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combined with firmware (e.g., instructions stored in non-
volatile memory) and/or software) that is operable to perform
the instruction 304 and/or store the result in response to
and/or as a result of the instruction 304 (e.g., in response to
one or more instructions or control signals decoded or other-
wise derived from the instruction 304). In some embodi-
ments, the circuitry or logic may include SM3 two round
evaluation logic 326, such as, for example, XOR logic, rotate
logic, AND logic, OR logic, NOT logic, etc.

In some embodiments, to help avoid unduly increasing die
area and/or power consumption, some of the hardware or
other logic used to implement the SM3 two round state word
update instruction, or other instructions disclosed herein, may
optionally be reused to implement one or more other encryp-
tion instructions, such as, for example, those used to imple-
ment a Secure Hash Algorithm (e.g., SHA-2). For example, in
some embodiments, hardware or logic used to implement the
Boolean functions FF; (e.g., for when j>15) and GG; (e.g., for
when j>15) may optionally be reused to implement the coun-
terpart Maj (majority) and Ch (choose) functions of SHA-2.
As another example, in some embodiments, hardware or logic
used to perform additions in SM3 (e.g., one or more adders)
may optionally be reused to implement additions in SHA-2.
Some XOR and rotate logic may also optionally be reused.

To avoid obscuring the description, a relatively simple
processor 320 has been shown and described. In other
embodiments, the processor may optionally include other
well-known processor components. Possible examples of
such components include, but are not limited to, an instruc-
tion fetch unit, instruction and/or data .1 caches, second or
higher level caches (e.g., an .2 cache), an instruction sched-
uling unit, a register renaming unit, a reorder buffer, a retire-
ment unit, a bus interface unit, instruction and data translation
lookaside buffers (TLBs), other components included in pro-
cessors, and various combinations thereof.

FIG. 4 is a block flow diagram of an embodiment of a
method 490 of performing an SM3 two round at least four (or
in some embodiments eight) state word update instruction. In
some embodiments, the operations and/or method of FIG. 4
may be performed by and/or within the processor of FIG. 3.
The components, features, and specific optional details
described herein for the processor of FIG. 3, also optionally
apply to the operations and/or method of FIG. 4. Alterna-
tively, the operations and/or method of FIG. 4 may be per-
formed by and/or within a similar or different apparatus.
Moreover, the processor of FIG. 3 may perform operations
and/or methods the same as, similar to, or different than those
of FIG. 4.

The method includes receiving the SM3 two round state
word update instruction, at block 491. In various aspects, the
instruction may be received at a processor, an instruction
processing apparatus, or a portion thereof (e.g., an instruction
fetch unit, a decode unit, a bus interface unit, etc.). In various
aspects, the instruction may be received from an off-die
source (e.g., from memory, interconnect, etc.), or from an
on-die source (e.g., from an instruction cache, instruction
queue, etc.). The SM3 two round state word update instruc-
tion may specify or otherwise indicate one or more source
packed data operands. The one or more source packed data
operands may have eight 32-bit state words A, B, C,, D, B,
F,, G,, and H, for a round (j) of an SM3 hash algorithm. The
one or more source packed data operands may also have four
messages that are sufficient to evaluate two rounds of the SM3
hash algorithm.

One or more result packed data operands may be stored, in
one or more destination storage locations indicated by the
instruction, in response to and/or as a result of the instruction,
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at block 492. Representatively, an execution unit, instruction
processing apparatus, or processor may perform the instruc-
tion and store the result. In some embodiments, the one or
more result packed data operands having at least four two-
round updated 32-bit state words A, . B, ,, E,,,, and F_,,
which have been updated by the two rounds of the SM3 hash
algorithm relative to A, B, B, and ;. In some embodiments,
the method may optionally include receiving any of the
source operands and storing any of the results shown in FIG.
5, including the variations and alternatives mentioned there-
for, although the scope of the invention is not so limited.

The illustrated method involves architectural operations
(e.g., those visible from a software perspective). In other
embodiments, the method may optionally include one or
more microarchitectural operations. By way of example, the
instruction may be fetched, decoded, scheduled out-of-order,
source operands may be accessed, an execution unit may
perform microarchitectural operations to implement the
instruction, etc. The microarchitectural operations to imple-
ment the instruction may optionally include any of the opera-
tions of an SM3 round (e.g., round 213).

FIG. 5 is a block diagram illustrating an embodiment of an
SM3 two round state word update operation 540 that may be
performed in response to an embodiment of an SM3 two
round state word update instruction. In the illustrated embodi-
ment, the instruction specifies or otherwise indicates a first
128-bit source packed data operand 530, a second 128-bit
source packed data operand 532, and a third 128-bit source
packed data operand 534. The use of 128-bit operands may
offer certain advantages, for example allowing use of the
instructions in processors that have 128-bit packed data reg-
isters but not 256-bit packed data registers, but is not required.
In other embodiments, different numbers and sizes of oper-
ands may optionally be used (e.g., 64-bit operands, 256-bit
operands, a combination of different sizes, etc.).

In the illustrated embodiment, the first 128-bit source
packed data operand 530 has a first four 32-bit state words for
input to the current round (j), and the second 128-bit source
packed data operand 532 has a second four 32-bit state words
forinput to the current round (j). Specifically, in the illustrated
embodiment, the first source operand 530 has, from a least
significant bit position on the right to a most significant bit
position on the left, the 32-bit state element A, in bits [31:0],
B, inbits [63:32], E, in bits [95:64], and F; in bits [127:96]. In
other embodiments, a reverse order may also optionally be
used. The second source operand 532 has, also from a least
significant bit position on the right to a most significant bit
position on the left, the 32-bit state elements C, in bits [31:0],
D, inbits [63:32], G, in bits [95:64], and H, in bits [127:96]. In
other embodiments, a reverse order may also optionally be
used. The illustrated arrangement may offer certain advan-
tages, but is not required. In other embodiments, the eight
32-bit state words may be rearranged variously among the
available source operands.

The illustrated third source packed data operand 534 has
message information (e.g., a set of four messages) sufficient
to evaluate two SM3 rounds. Specifically, the illustrated third
source packed data operand 534 has the four messages W,
W1, W, and W 5. The messages W, and W, are suffi-
cient to calculate the message W', according to Equation 6.
Similarly, the messages W, s and W, are sufficient to cal-
culate the message W', | according to Equation 6. In another
embodiment, the instruction may indicate one or more source
operands providing the four messages W, W, ,, W', and
W', Instill other embodiments, other combinations of mes-
sages may be used as long as the needed messages for two
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rounds are either provided or can be calculated or derived
from the information provided (e.g., W, W, ,, W, W_ ).

Referring again to FIG. 5, a first result packed data operand
536 may be generated (e.g., by an execution unit 524) and
stored in a destination storage location in response to the SM3
two round state word update instruction. The destination stor-
age location may be specified or otherwise indicated by the
instruction. In various embodiments, the destination storage
location may be a packed data register, a memory location, or
other storage location. In some embodiments, the first result
packed data operand 536 may include four 32-bit state words
updated by two SM3 rounds. For example, in the illustrated
embodiment, the first result packed data operand 536 has, the
32-bit state elements A, , in bits [31:0], B, , in bits [63:32],
EB,,,inbits [95:64],and F,, , in bits [127:96]. In other embodi-
ments, areverse order may also optionally be used. Moreover,
although the illustrated arrangement may offer certain advan-
tages, in other embodiments, the state words may optionally
be rearranged variously within the operand.

In some embodiments, in the optional case of an SM3 two
round eight state word update instruction, a second result
packed data operand 538 may be generated and stored in a
second destination storage location in response to the instruc-
tion. The second destination storage location may be speci-
fied or otherwise indicated by the instruction. In various
embodiments, the second destination storage location may be
a packed data register, a memory location, or other storage
location. In some embodiments, the second result packed data
operand 538 may include the remaining four 32-bit state
words, which were not included in the first result packed data
operand 536, which have been updated by two SM3 rounds.
Specifically, in the illustrated embodiment, the second result
packed data operand 538 has, the 32-bit state elements C,, , in
bits [31:0], D,, , in bits [63:32], G,,, in bits [95:64], and H,, ,
in bits [127:96]. In other embodiments, a reverse order may
also optionally be used. Moreover, although the illustrated
arrangement may offer certain advantages, various inter-op-
erand and intra-operand rearrangements are contemplated.

Notice that, in some embodiments, the first result packed
data operand 536 may optionally include the same corre-
sponding type of state words (e.g., A, B, E, F) as the first
source packed data operand 530, and in the same order. Also,
in some embodiments, the second result packed data operand
538 may optionally include the same corresponding type of
state words (e.g., C, D, G, H) as the second source packed data
operand 532, and in the same order. This is not required, but
may tend to provide certain efficiencies and/or advantages
from an overall algorithmic perspective (e.g., by making
management of the state words between rounds more effi-
cient).

The second result packed data operand 538 of FIG. 5 is
optional not required. In other embodiments, in the optional
case of an SM3 two round four state word update instruction/
operation, the first result packed data operand 536 (e.g., A .,
B,.s, Bjpo, F),, in any desired order) may be stored, but not
second result packed data operand 538 (e.g., not C,,,, D, .,
Gy, H;,,). Notice that one of the source operands includes
A, B, E;, andF ), and the other source operand includes C,, D,
G,, and H;. This particular grouping of these types of state
words within the same operands offers an advantage when
only four state words are updated by two rounds (e.g., A ,»,
B,.5, By, F),» generated). As will be explained further below
(e.g., in conjunction with FIG. 6), the other four state words
updated by two rounds (e.g., C,,5, D;.s, G5, Hy,») may be
readily generated from A , B, B, and F, such as, for example,
by software or by an additional SM3 acceleration instruction
(e.g., instruction 106 and/or instruction described for FIG. 6).
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The particular illustrated grouping of the different-typed state
words among the operands offers less advantage when all
eight state words are updated by two rounds by performing a
single instruction. In such cases, although some arrangements
may tend to offer more efficient management of state words
between rounds, almost any intra-operand and/or inter-oper-
and rearrangement of the differently-typed state words is
possible. For example, it may still be beneficial to maintain
the same order of the differently-typed state words in the
source and result operands.

In some embodiments, for example when only four state
words are updated by two rounds (e.g., A, 5, B, 5, B, .5, F ),
these updated four state words may optionally be written over
four differently-typed state words in one of the source oper-
ands, although this is not required. For example, A ,,, B,,,,
B, . F,,, maybewrittenoverC,,,,D,,,. G,,,, H,,, instead of
over A, B, B, F)). For example, the instruction may have a
source/destination operand that is explicitly specified once,
but is implicitly understood to be used as both a source oper-
and and subsequently as a destination operand. Writing A

i+29
B, B 5 F,overC,D, G, H, instead of over A, B E.F

may otfer an advantage, for example when it’s des]ireé nojt toj
have another specified or implicitly indicated operand storage
location, of preserving A, B, B, F, so that they may be used
to update the remaining four state words by two rounds (e.g.,
Cji25Dj45, Giiny Hy, o). For example, an additional SM3 accel-
eration instruction may be used (see e.g., FIG. 6), or this may
be done in software.

One particular example embodiment of an SM3 two round
four state word update instruction is the following
SM3RNDS2 instruction. SRC represents a first 128-bit
source operand, DST represents a second 128-bit source/
destination operand (one location is specified and use as both
a source and again as a destination is implicit to instruction),
<XMMO> represents a third 128-bit source operand whose
location is implicit to the instruction instead of being explic-
itly specified, and imm represents an immediate (e.g., an 8-bit
immediate) to specify the round number (j). In other embodi-
ments <XMMO> may be substituted for another 128-bit reg-
ister.

SM3RNDS2 DST, SRC, imm, <XMMO0>

j=imm

[C, D, G, H]=DST

[A, B, E, F]=SRC

[Wiss Woa, W, WI=XMMO

In response to the SM3RNDS?2 instruction, a processor
and/or an execution unit may perform the following opera-
tions, or their equivalent, or at least generate a result consis-
tent with these operations:

If (j<16), then T,=0x79¢cc4519, else T,=0x7a879d8a, endif

SS1=((A,<<<12)+E +(T ;<<<j))<<<7

S52=8S1 XOR (A <<<12)

TT1=FF(A,, B, C)}+D+SS24+(W, XOR W, .,)
TT2=GG,(E, F,, G+ +SS1+W,
D=,
Cpy=B<<<9
1LY
A =TT1

L1 7N
G, =F;<<<19

1y
E,,,~PO(TT2)
SSI=((A,,  <<<I2)+E,, , +#(T,<<<(j+1)))<=<<7
$S2-SS1 XOR (A,,,<<<12)
TT1=FF,, (A, 1.B.1,Cp 4D, +SS2+(W,,
TT2=GG,, (B 1 F 1 1.Gran)#H,, +SS14W,
B —

J+2

XORW,, 5)

7Aj+1
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A,~TT1
Fj+2:Ej+1
E,,.=PO(TT2)
DST:[Aj+2s Bj+2s Ej+2s Fj+2]

Notice that, for the second round, it is not required to
calculate C,,,, D,,, G;,,, H,,, and these calculations may
optionally be omitted if desired from the second round.
Accordingly, two full rounds need not be performed, and it is
to be appreciated that reference herein to two rounds encom-
passes such operations optionally be removed from the sec-
ond of the two rounds.

It is to be appreciated that this is just one illustrative
example. Other embodiments may use different numbers and
sizes of operands, as previously described. Moreover, other
embodiments may rearrange the elements variously within
the operands. Both inter-operand and intra-operand rear-
rangements are possible. In addition, it is not required to use
implicit reuse of a SRC/DST register, or to use an implicit
register (e.g., <XMMO0>). For example, the architecture may
allow the operands to be specified explicitly, implicit subse-
quent registers may be used, etc.

FIG. 6 is a block diagram illustrating an embodiment of an
SM3 two round four remaining state word update operation
644 that may be performed in response to an embodiment of
an SM3 two round four remaining state word update instruc-
tion. In the illustrated embodiment, the instruction specifies
or otherwise indicates a source packed data operand 646. As
shown, in some embodiments, the source packed data oper-
and may be a 128-bit operand. Alternatively, two 64-bit oper-
ands, a 256-bit operand, or other sized operands may option-
ally be used instead. In some embodiments, the source packed
data operand may have four state words to be input to the
current round (j) as input. For example, in the illustrated
embodiment, the source packed data operand has, from a least
significant bit position on the right to a most significant bit
position on the left, the 32-bit state elements A, in bits [31:0],
B, in bits [63:32], E; in bits [95:64], and F; in bits [127:96]. In
other embodiments, these elements may be apportioned
among any desired number of source operands and in any
desired order within the source operand(s). For example, a
reverse order within the operand may optionally be used.
Moreover, in still other embodiments, the state words may
optionally be rearranged variously within a single source
operand or two source operands. In one aspect, the source
packed data operand 646 may be the same operand/data as the
first source packed data operand 530 of FIG. 5 (e.g., the
operand/data may be reused by the algorithm).

A result packed data operand 648 may be generated (e.g.,
by an execution unit 624) and stored in a destination storage
location in response to the instruction/operation. The desti-
nation storage location may be specified or otherwise indi-
cated by the instruction. In various embodiments, the desti-
nation storage location may be a packed data register, a
memory location, or other storage location. As shown, in
some embodiments, the result packed data operand may be a
128-bit operand. Alternatively, two 64-bit operands, a 256-bit
operand, or other sized operands may optionally be used. In
some embodiments, the result packed data operand 648 may
include the four remaining state words updated by two
rounds. In one aspect, the four remaining state words may
represent those not included in the first result packed data
operand 536 stored in response to an SM3 two round four
state word update instruction. In another aspect, the four
remaining state words may represent the four types of state
words (e.g., C, D, G, and H-types) not included in the source
packed data operand 646 (e.g., A, B, E, and F-types). As
shown, in the illustrated embodiment, the result packed data
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operand 648 has, the 32-bit state elements C,, , in bits [31:0],
D,,, in bits [63:32], G,,, in bits [95:64], and H_,, in bits
[127:96]. In other embodiments, a reverse order may option-
ally be used. Moreover, although the illustrated arrangement
may offer certain advantages, in still other embodiments, the
state words may optionally be rearranged variously within the
result packed data operand.

In some embodiments, a processor and/or the execution
unit 624 may perform the following equations to generate
Cjs25 Dyys Gyyn and H,, respectively, from A, B, E; and F,
(provided in the source operand):

Cj2=B;,1=4;<<<9
D; 5=C;,=B;<<<9
Gjo =, <<<19=E<<<19

H;,,=G;

7 =F<<<19

These relations can be readily derived from comparing the
equalities for two rounds of the SM3 algorithm as shown in
FIG. 2.

Recall that, as discussed above for FIG. 2 and Equations
4-6, the SM3 algorithm utilizes messages (W ). Messages W,
to W, 5 are obtained from the 512-bit block being compressed.
The remaining messages are calculated based on Equations
4-6. Conventionally, the message expansion generally tends
to involve executing a large number of separate instructions.
For example, conventionally it is possible that a separate
instruction may be used for each XOR operation, for each
rotate operation, etc. Additional instructions may also poten-
tially be needed to move or rearrange data to prepare it for
expanding more messages. In addition, a large number of
such W, messages need to be generated (e.g., W, sto W) As
aresult, the performance ofthe rounds in software by separate
more general-purpose instructions tends to be poor and/or
take a significant amount of time.

In some embodiments, a pair of instructions to accelerate
SM3 message expansion (e.g., instructions 108, 110) may be
included in an instruction set of a processor. In some embodi-
ments, the instructions may be used to generate four new
messages (e.g., messages W, 6, W5, W, 15, and W, ;o)
corresponding to four sequential and consecutive rounds. The
pair of instructions may be included whether or not the
instruction set also includes an SM3 two round at least four
state word update instruction (e.g., instruction 104).

In some embodiments, the source operands of the pair of
instructions may collectively include a set of messages suffi-
cient to generate the four new messages. The set of input
messages needed to generate these four new messages are
shown in the following four instances of Equation 4, as fol-
lows:

W,16=PLOV, XOR W, XOR (W, 13<<<15))XOR

(W 3<<<T)XOR W,, 10

W, 17=P1(W;, XOR W, XOR (W), 14<<<15))XOR
(W a<<<1)XOR W,

W,15=PL(W, > XOR ), XOR(}, 5<<<15))XOR

(W 5<<<T)XOR W}, >

Wi

s=P1(;,; XORW,

10 XOR(W},16<<<15))XOR
(,,¢<<<T)XOR W,

i+13

Sixteen unique messages are needed to evaluate these rela-
tions for the four new messages (e.g., W, through W, , 5). In
addition, the message W, | needs to be calculated to com-
plete the calculation of W 5. W, corresponds to the oldest
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round to be input to round j, W,,, corresponds to the next
oldest round to be input to round (j+1), and so on.

In one embodiment, all sixteen unique messages (e.g., W;
to W, , 5) may optionally be included in the source operand(s)
of one single instruction. The one single instruction may be
operable to cause the processor to store all four updated
messages (e.g, W, to W ;) within the confines of the
execution of that single instruction. In other embodiments, a
pair of instructions may be used, and the sixteen unique
messages (e.g., W, to W, 5) may be collectively included in
the source operand(s) of the pair of instructions. The pair of
instructions in cooperation may be operable to cause the
processor to store all four updated messages (e.g., W, ;5 to
W,,15) within the confines of the execution of the pair of
instructions. Each of the two instructions may provide only a
subset of the needed input messages through its correspond-
ing source operand(s). A first/initial instruction of the pair
may generate temporary results that are further processed by
the second/subsequent instruction to generate the four new
messages. Using a pair of instructions, instead of a single
instruction, may offer certain potential advantages, for
example, allowing the use of smaller registers and/or a
smaller number of source operands than would be needed to
provide all needed input messages in the source operand(s) of
one single instruction.

FIGS. 7-8 illustrate operations for an embodiment of a pair
of SM3 message expansion instructions. The instructions
may be received, decoded, an execution unit may be enabled
to perform the operations, etc., as previously described. FI1G.
7 is a block diagram illustrating an embodiment of an SM3
four message expansion initiation operation 750 that may be
performed in response to an embodiment of an SM3 four
message expansion initiation instruction (e.g., a first instruc-
tion of the pair to be performed). In the illustrated embodi-
ment, the instruction specifies or otherwise indicates a first
128-bit source packed data operand 752, a second 128-bit
source packed data operand 754, and a third 128-bit source
packed data operand 756. As before, the use of 128-bit oper-
ands may offer certain advantages, but is not required. In
other embodiments, different numbers and sizes of operands
may optionally be used, such as, for example, 64-bit oper-
ands, 256-bit operands, a combination of different sized oper-
ands, etc.

The first, second, and third source operands may be used to
provide only a subset of the sixteen different input messages
needed to evaluate the four new messages. In one aspect, the
messages provided may represent those sufficient to evaluate
a piece or portion of each of the four instances of Equation 4
shown immediately above. For example, in the illustrated
example embodiment, the first source operand 752 has, the
messages W in bits [31:0], W, , in bits [63:32], W, in bits
[95:64],and W, ; inbits [127:96]. The second source operand
754 has, the messages W, 5 in bits [31:0], W, in bits
[63:32], W, , 5 in bits [95:64], and a do-not-care value (*) in
bits [127:96]. The do-not-care value (*) may represent vari-
ous convenient values, such as, for example, all zeroes, all
ones, existing/unchanged bit values, etc. The third source
operand 756 has, themessages W, , in bits [31:0], W, s in bits
[63:32], W, in bits [95:64], and W, in bits [127:96].

In the illustrated embodiment, the first source operand 752
optionally has four messages corresponding to four consecu-
tive rounds, and optionally arranged according to round order
(e.g., ascending round order with increasing bit significance)
Likewise, the second source operand 754 optionally has three
messages corresponding to three consecutive rounds, and
optionally arranged according to round order (e.g., ascending
round order). Similarly, the third source operand 756 option-
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ally has four messages corresponding to four consecutive
rounds, and optionally arranged according to (e.g., ascend-
ing) round order. In another embodiment, a reverse or
reflected order of the messages within in the operands may
optionally be used if desired (e.g., the messages may be
arranged in descending order within each of the operands).
Storing messages for adjacent rounds within the same oper-
and, storing messages for adjacent rounds in round order
within the operands, and storing the adjacent messages of
each of the operands in the same round order (e.g., all
arranged in ascending round order), may help to increase the
efficiency of managing the rearrangement of messages
between rounds, but is not required. In other embodiments,
the messages may optionally be rearranged through various
intra-operand and/or inter-operand rearrangements. More-
over, in other embodiments, other numbers and/or sizes of
operands may optionally be used, if desired.

Referring again to F1G. 7, a result packed data operand 758
may be generated (e.g., by an execution unit 724) and stored
in a destination storage location in response to the SM3 four
message expansion initiation instruction/operation. The des-
tination storage location may be specified or otherwise indi-
cated by the instruction. The destination storage location may
be a packed data register, a memory location, or other storage
location. In some embodiments, the result packed data oper-
and 758 may include four temporary or intermediate results,
for example, each representing a different evaluated piece/
portion of a corresponding one of the four instances of Equa-
tion 4 shown immediately above. As used herein, an evaluated
piece/portion means a value consistent with an evaluated
piece/portion not necessarily that each operation shown in the
equations be performed or even that those equations are actu-
ally used. For example, in other embodiments, computation-
ally equivalent equations or portions thereof (e.g., computa-
tionally equivalent operations) may be derived and
substituted for the equations shown herein.

Referring again to FIG. 7, in the illustrated embodiment,
the result packed data operand 758 has, a first 32-bit tempo-
rary result (W ,p0) in bits [31:0], W, ., in bits [63:32],
W rasps 101 bits [95:64], and W 1, /5 in bits [127:96]. In some
embodiments, W ;5 ,-W ., »; may be equivalent to the follow-
ing calculations being performed by the processor:

TO=XOR W, , XOR (W, ,;,<<<15)
T1=W,,, XORW, ¢ XOR (W, ,<<<15)

T2=W,,, XOR W, o XOR (W, ,5<<<15)

T3=W,; XORW,, 4

W rrpo=P1(10)

Wi =P1(11)

Wonpr=P1(12)

Worngps=P1(13)

In one particular embodiment, the first source operand 752
be in an implicitly indicated 128-bit source register, the sec-
ond source operand 754 may be in an explicitly specified
128-bit source register, the third source operand 756 may be
in an explicitly specified 128-bit source/destination register,
and the result operand 758 may be written over the third
source operand 756 in the source/destination register,
although the scope of the invention is not so limited.

FIG. 8 is a block diagram illustrating an embodiment of an
SM3 four message expansion completion operation 860 that
may be performed in response to an embodiment of an SM3
four message expansion completion instruction. In the illus-
trated embodiment, the instruction specifies or otherwise
indicates a first 128-bit source packed data operand 862, a
second 128-bit source packed data operand 864, and a third
128-bit source packed data operand 866. As before, the use of
128-bit operands may offer certain advantages, for example
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allowing use of the instructions in processors that have 128-
bit packed data registers but not 256-bit packed data registers,
but is not required. In other embodiments, different numbers
and sizes of operands may optionally be used, such as, for
example, 64-bit operands, 256-bit operands, a combination of
different sized operands, etc.

The first, second, and third source operands may be used to
provide a remaining complementary subset of the sixteen
different messages needed to generate the four new messages
for the four sequential and consecutive rounds. In some
embodiments, the messages may represent those sufficient to
evaluate remaining pieces/portions of the four instances of
Equation 4 not evaluated by the instruction/operation of FIG.
7. For example, in the illustrated embodiment, the first source
operand 862 has, the 32-bit message W, in bits [31:0], the
message W,,,, in bits [63:32], the message W,,,, in bits
[95:64], and the message W__ ;5 in bits [127:96]. The second
source operand 864 has, the message W/, ; in bits [31:0], the
message W, in bits [63:32], the message W, 5 in bits [95:
64], and the message W, 4 in bits [127:96]. The third source
operand 866 has, the first temporary result (W ;;,,) in bits
[31:0], the second temporary result (W 5, ) in bits [63:32],
the third temporary result (W ,,,) in bits [95:64], and the
fourth temporary result (W) in bits [127:96]. In one
aspect, the third source packed data operand 866 may option-
ally be the same operand as the result packed data operand
758.

In the illustrated embodiment, the first source operand 862
optionally has four messages corresponding to four consecu-
tive rounds, and optionally arranged according to round order
(e.g., ascending round order with increasing bit significance)
Likewise, the second source operand 864 optionally has four
messages corresponding to three consecutive rounds, and
optionally arranged according to round order (e.g., ascending
round order). The third source operand 866 optionally has
four temporary results W, 10 W5, 5. In another embodi-
ment, areverse or reflected order of the messages within in the
operands may optionally be used if desired (e.g., the mes-
sages may be arranged in descending order within each of the
operands). Storing messages for adjacent rounds within the
same operand, storing messages for adjacent rounds in round
order within the operands, and storing the adjacent messages
of each of the operands in the same round order (e.g., all
arranged in ascending round order), may help to increase the
efficiency of managing the rearrangement of messages
between rounds, but is not required. In other embodiments,
the messages and/or the temporary results (W 1,00 W r5/03)
may optionally be rearranged through various intra-operand
and/or inter-operand rearrangements. Moreover, in other
embodiments, other numbers and/or sizes of operands may
optionally be used, if desired.

Referring again to FIG. 8, a result packed data operand 868
may be generated (e.g., by an execution unit 824) and stored
in a destination storage location in response to the SM3 four
message expansion completion instruction/operation. The
destination storage location may be specified or otherwise
indicated by the instruction. The destination storage location
may be a packed data register, a memory location, or other
storage location. In some embodiments, the result packed
data operand 868 may include four messages for four sequen-
tial and consecutive rounds. As shown, in the illustrated
embodiment, the result packed data operand 868 has, a first
32-bit message W, ,  to be input to round (j+16) of the com-
pression function of the SM3 hash function in bits [31:0], a
second 32-bit message W, to be input to round (j+17) in
bits [63:32], a third 32-bit message W, to be input to round
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(j+18) in bits [95:64], and a fourth 32-bit message W,
input to round (j+19) in bits [127:96].
In some embodiments, W,, s to W, ,, may be evaluated to
be consistent with the following operations:

stobe

W16 W3<<<T)XOR W}, 10 XOR Wrpspo
W17(Wia<<<T)XOR W}, ;| XOR Wpypsp,

W,15=(Wis<<<T)XOR W}, 1> XOR Wrpspr

W 10=(W;,6<<<T)XOR

W,

413 XOR Wiazps

W 10= W10 XOR(W, 16<<<6)XOR(W}, |5<<<15)
XOR (W}, 16<<<30)

Notice W, 4 is calculated and then used to complete the
evaluation of W, 5. Advantageously, this pair of SM3 mes-
sage expansion operations/instructions may significantly
help to increase the speed, efficiency, and/or performance of
implementing the SM3 message generation (e.g., by avoiding
an otherwise high instruction count and complexity through
conventional software approaches). It is to be appreciated that
this is just one illustrative example of a suitable pair of
instructions.

In other embodiments, other pieces of the four instances of
Equation 4 shown above may optionally be evaluated by the
first instruction of the pair and the remaining pieces may be
evaluated by the second subsequent instruction. Correspond-
ingly, different subsets of the messages may be provided by
the first instruction of the pair versus those provided by the
second instruction of the pair. That is, there is flexibility in
apportioning the messages between the first and second
instructions as long as the messages provided can be used to
evaluate pieces of the instances of Equation 4 that can be
passed as intermediate results from the first instruction to the
second subsequent instruction which may use them and the
remaining not yet provided messages to complete the evalu-
ations of these instances of Equation 4.

In one particular embodiment, the first source operand 862
may be in an implicitly indicated 128-bit source register, the
second source operand 864 may be in an explicitly specified
128-bit source register, the third source operand 866 may be
in an explicitly specified 128-bit source/destination register,
and the result operand 868 may be written over the third
source operand 866 in the source/destination register,
although the scope of the invention is not so limited.

The instructions and processors described here are
intended to implement the SM3 Chinese cryptographic hash
function and obtain values that are consistent therewith. Any
possible discrepancies or inconsistencies in the description
(e.g., due to typographical errors, translation errors, errors in
the description, or otherwise) that would lead to results incon-
sistent with the SM4 algorithm are unintentional and errone-
ous. In addition, while the current version of the SM3 algo-
rithm has been described, it is to be appreciated that
embodiments are also applicable to extensions of this stan-
dard (e.g., SMx Chinese cryptographic hash standards where
SMx represents a future version of SM3), derivations of this
standard, modifications of this standard, related standards,
and the like, which meet the limitations of the claims. As used
herein, SM3 refers to the described and known algorithm
regardless of whether it is called SM3, or some other name.
Exemplary Core Architectures, Processors, and Computer
Architectures

Processor cores may be implemented in different ways, for
different purposes, and in different processors. For instance,
implementations of such cores may include: 1) a general
purpose in-order core intended for general-purpose comput-
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ing; 2) a high performance general purpose out-of-order core
intended for general-purpose computing; 3) a special purpose
core intended primarily for graphics and/or scientific
(throughput) computing. Implementations of different pro-
cessors may include: 1) a CPU including one or more general
purpose in-order cores intended for general-purpose comput-
ing and/or one or more general purpose out-of-order cores
intended for general-purpose computing; and 2) a coproces-
sor including one or more special purpose cores intended
primarily for graphics and/or scientific (throughput). Such
different processors lead to different computer system archi-
tectures, which may include: 1) the coprocessor on a separate
chip from the CPU; 2) the coprocessor on a separate die in the
same package as a CPU; 3) the coprocessor on the same die as
a CPU (in which case, such a coprocessor is sometimes
referred to as special purpose logic, such as integrated graph-
ics and/or scientific (throughput) logic, or as special purpose
cores); and 4) a system on a chip that may include on the same
die the described CPU (sometimes referred to as the applica-
tion core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.
Exemplary Core Architectures

In-Order and Out-of-Order Core Block Diagram

FIG. 9A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention. FIG. 9B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to
embodiments of the invention. The solid lined boxes in FIGS.
9A-B illustrate the in-order pipeline and in-order core, while
the optional addition of the dashed lined boxes illustrates the
register renaming, out-of-order issue/execution pipeline and
core. Given that the in-order aspect is a subset of the out-of-
order aspect, the out-of-order aspect will be described.
Exemplary Core Architectures

In-order and out-of-order core block diagram In FIG. 9A, a
processor pipeline 900 includes a fetch stage 902, a length
decode stage 904, a decode stage 906, an allocation stage 908,
arenaming stage 910, a scheduling (also known as a dispatch
orissue) stage 912, a register read/memory read stage 914, an
execute stage 916, a write back/memory write stage 918, an
exception handling stage 922, and a commit stage 924.

FIG. 9B shows processor core 990 including a front end
unit 930 coupled to an execution engine unit 950, and both are
coupled to amemory unit 970. The core 990 may be a reduced
instruction set computing (RISC) core, a complex instruction
set computing (CISC) core, a very long instruction word
(VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 990 may be a special-purpose core,
such as, for example, a network or communication core,
compression engine, coprocessor core, general purpose com-
puting graphics processing unit (GPGPU) core, graphics
core, or the like.

The front end unit 930 includes a branch prediction unit
932 coupled to an instruction cache unit 934, which is
coupled to an instruction translation lookaside buffer (TLB)
936, which is coupled to an instruction fetch unit 938, which
is coupled to a decode unit 940. The decode unit 940 (or
decoder) may decode instructions, and generate as an output
one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control signals,
which are decoded from, or which otherwise reflect, or are
derived from, the original instructions. The decode unit 940
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may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited
to, look-up tables, hardware implementations, programmable
logic arrays (PL.As), microcode read only memories (ROMs),
etc. In one embodiment, the core 990 includes a microcode
ROM or other medium that stores microcode for certain mac-
roinstructions (e.g., in decode unit 940 or otherwise within
the front end unit 930). The decode unit 940 is coupled to a
rename/allocator unit 952 in the execution engine unit 950.

The execution engine unit 950 includes the rename/alloca-
tor unit 952 coupled to a retirement unit 954 and a set of one
or more scheduler unit(s) 956. The scheduler unit(s) 956
represents any number of different schedulers, including res-
ervations stations, central instruction window, etc. The sched-
uler unit(s) 956 is coupled to the physical register file(s)
unit(s) 958. Each of the physical register file(s) units 958
represents one or more physical register files, different ones
of'which store one or more different data types, such as scalar
integer, scalar floating point, packed integer, packed floating
point, vector integer, vector floating point, status (e.g., an
instruction pointer that is the address of the next instruction to
be executed), etc. In one embodiment, the physical register
file(s) unit 958 comprises a vector registers unit, a write mask
registers unit, and a scalar registers unit. These register units
may provide architectural vector registers, vector mask reg-
isters, and general purpose registers. The physical register
file(s) unit(s) 958 is overlapped by the retirement unit 954 to
illustrate various ways in which register renaming and out-
of-order execution may be implemented (e.g., using a reorder
buffer(s) and aretirement register file(s); using a future file(s),
a history buffer(s), and a retirement register file(s); using a
register maps and a pool of registers; etc.). The retirement unit
954 and the physical register file(s) unit(s) 958 are coupled to
the execution cluster(s) 960. The execution cluster(s) 960
includes a set of one or more execution units 962 and a set of
one or more memory access units 964. The execution units
962 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g.,
scalar floating point, packed integer, packed floating point,
vector integer, vector floating point). While some embodi-
ments may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s) 956,
physical register file(s) unit(s) 958, and execution cluster(s)
960 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar float-
ing point/packed integer/packed floating point/vector integer/
vector floating point pipeline, and/or a memory access pipe-
line that each have their own scheduler unit, physical register
file(s) unit, and/or execution cluster—and in the case of a
separate memory access pipeline, certain embodiments are
implemented in which only the execution cluster of this pipe-
line has the memory access unit(s) 964). It should also be
understood that where separate pipelines are used, one or
more of these pipelines may be out-of-order issue/execution
and the rest in-order.

The set of memory access units 964 is coupled to the
memory unit 970, which includes a data TLB unit 972
coupled to a data cache unit 974 coupled to a level 2 (L2)
cache unit 976. In one exemplary embodiment, the memory
access units 964 may include a load unit, a store address unit,
and a store data unit, each of which is coupled to the data TL.B
unit 972 in the memory unit 970. The instruction cache unit
934 is further coupled to a level 2 (L.2) cache unit 976 in the
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memory unit 970. The L2 cache unit 976 is coupled to one or
more other levels of cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-
of-order issue/execution core architecture may implement the
pipeline 900 as follows: 1) the instruction fetch 938 performs
the fetch and length decoding stages 902 and 904; 2) the
decode unit 940 performs the decode stage 906; 3) the
rename/allocator unit 952 performs the allocation stage 908
and renaming stage 910; 4) the scheduler unit(s) 956 per-
forms the schedule stage 912; 5) the physical register file(s)
unit(s) 958 and the memory unit 970 perform the register
read/memory read stage 914; the execution cluster 960 per-
form the execute stage 916; 6) the memory unit 970 and the
physical register file(s) unit(s) 958 perform the write back/
memory write stage 918; 7) various units may be involved in
the exception handling stage 922; and 8) the retirement unit
954 and the physical register file(s) unit(s) 958 perform the
commit stage 924.

The core 990 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif.; the ARM instruc-
tion set (with optional additional extensions such as NEON)
of ARM Holdings of Sunnyvale, Calif.), including the
instruction(s) described herein. In one embodiment, the core
990 includes logic to support a packed data instruction set
extension (e.g., AVX1, AVX?2), thereby allowing the opera-
tions used by many multimedia applications to be performed
using packed data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
orthreads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a
single physical core provides a logical core for each of the
threads that physical core is simultaneously multithreading),
or a combination thereof (e.g., time sliced fetching and
decoding and simultaneous multithreading thereafter such as
in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 934/974 and a shared .2
cache unit 976, alternative embodiments may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor. Alter-
natively, all of the cache may be external to the core and/or the
processor.

Specific Exemplary In-Order Core Architecture

FIGS. 10A-B illustrate a block diagram of a more specific
exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the same
type and/or different types) in a chip. The logic blocks com-
municate through a high-bandwidth interconnect network
(e.g., aring network) with some fixed function logic, memory
1/0 interfaces, and other necessary /O logic, depending on
the application.

FIG. 10A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
1002 and with its local subset of the Level 2 (L.2) cache 1004,
according to embodiments of the invention. In one embodi-
ment, an instruction decoder 1000 supports the x86 instruc-
tion set with a packed data instruction set extension. An L1
cache 1006 allows low-latency accesses to cache memory
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into the scalar and vector units. While in one embodiment (to
simplify the design), a scalar unit 1008 and a vector unit 1010
use separate register sets (respectively, scalar registers 1012
and vector registers 1014) and data transferred between them
is written to memory and then read back in from alevel 1 (L1)
cache 1006, alternative embodiments of the invention may
use a different approach (e.g., use a single register set or
include a communication path that allow data to be trans-
ferred between the two register files without being written and
read back).

The local subset of the 1.2 cache 1004 is part of a global 1.2
cache that is divided into separate local subsets, one per
processor core. Each processor core has a direct access path to
its own local subset of the L2 cache 1004. Data read by a
processor core is stored in its .2 cache subset 1004 and can be
accessed quickly, in parallel with other processor cores
accessing their own local L2 cache subsets. Data written by a
processor core is stored in its own .2 cache subset 1004 and
is flushed from other subsets, if necessary. The ring network
ensures coherency for shared data. The ring network is bi-
directional to allow agents such as processor cores, 1.2 caches
and other logic blocks to communicate with each other within
the chip. Each ring data-path is 1012-bits wide per direction.

FIG. 10B is an expanded view of part of the processor core
in FIG. 10 A according to embodiments of the invention. FIG.
10B includes an [.1 data cache 1006A part of the [.1 cache
1004, as well as more detail regarding the vector unit 1010
and the vector registers 1014. Specifically, the vector unit
1010 is a 16-wide vector processing unit (VPU) (see the
16-wide ALLU 1028), which executes one or more of integer,
single-precision float, and double-precision float instruc-
tions. The VPU supports swizzling the register inputs with
swizzle unit 1020, numeric conversion with numeric convert
units 1022A-B, and replication with replication unit 1024 on
the memory input. Write mask registers 1026 allow predicat-
ing resulting vector writes.

Processor with Integrated Memory Controller and Graphics

FIG. 11 is a block diagram of a processor 1100 that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in FIG.
11 illustrate a processor 1100 with a single core 1102A, a
system agent 1110, a set of one or more bus controller units
1116, while the optional addition of the dashed lined boxes
illustrates an alternative processor 1100 with multiple cores
1102A-N, a set of one or more integrated memory controller
unit(s) 1114 in the system agent unit 1110, and special pur-
pose logic 1108.

Thus, different implementations of the processor 1100 may
include: 1) a CPU with the special purpose logic 1108 being
integrated graphics and/or scientific (throughput) logic
(which may include one or more cores), and the cores
1102A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 1102 A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (through-
put); and 3) a coprocessor with the cores 1102A-N being a
large number of general purpose in-order cores. Thus, the
processor 1100 may be a general-purpose processor, copro-
cessor or special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, GPGPU (general purpose graphics pro-
cessing unit), a high-throughput many integrated core (MIC)
coprocessor (including 30 or more cores), embedded proces-
sor, or the like. The processor may be implemented on one or
more chips. The processor 1100 may be a part of and/or may
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be implemented on one or more substrates using any of a
number of process technologies, such as, for example, BiC-
MOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache units
1106, and external memory (not shown) coupled to the set of
integrated memory controller units 1114. The set of shared
cache units 1106 may include one or more mid-level caches,
such as level 2 (1.2), level 3 (L3), level 4 (1.4), or other levels
of cache, a last level cache (LLC), and/or combinations
thereof. While in one embodiment a ring based interconnect
unit 1112 interconnects the integrated graphics logic 1108,
the set of shared cache units 1106, and the system agent unit
1110/integrated memory controller unit(s) 1114, alternative
embodiments may use any number of well-known techniques
for interconnecting such units. In one embodiment, coher-
ency is maintained between one or more cache units 1106 and
cores 1102-A-N.

In some embodiments, one or more of the cores 1102A-N
are capable of multithreading. The system agent 1110
includes those components coordinating and operating cores
1102A-N. The system agent unit 1110 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1102A-N and the
integrated graphics logic 1108. The display unit is for driving
one or more externally connected displays.

The cores 1102A-N may be homogenous or heterogeneous
in terms of architecture instruction set; that is, two or more of
the cores 1102A-N may be capable of execution the same
instruction set, while others may be capable of executing only
a subset of that instruction set or a different instruction set.
Exemplary Computer Architectures

FIGS. 12-15 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, per-
sonal digital assistants, engineering workstations, servers,
network devices, network hubs, switches, embedded proces-
sors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and vari-
ous other electronic devices, are also suitable. In general, a
huge variety of systems or electronic devices capable of
incorporating a processor and/or other execution logic as
disclosed herein are generally suitable.

Referring now to FIG. 12, shown is a block diagram of a
system 1200 in accordance with one embodiment of the
present invention. The system 1200 may include one or more
processors 1210, 1215, which are coupled to a controller hub
1220. In one embodiment the controller hub 1220 includes a
graphics memory controller hub (GMCH) 1290 and an Input/
Output Hub (IOH) 1250 (which may be on separate chips);
the GMCH 1290 includes memory and graphics controllers to
which are coupled memory 1240 and a coprocessor 1245; the
IOH 1250 is couples input/output (/O) devices 1260 to the
GMCH 1290. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 1240 and the coprocessor
1245 are coupled directly to the processor 1210, and the
controller hub 1220 in a single chip with the IOH 1250.

The optional nature of additional processors 1215 is
denoted in FIG. 12 with broken lines. Each processor 1210,
1215 may include one or more of the processing cores
described herein and may be some version of the processor
1100.

The memory 1240 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or a
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combination of the two. For at least one embodiment, the
controller hub 1220 communicates with the processor(s)
1210, 1215 via a multi-drop bus, such as a frontside bus
(FSB), point-to-point interface such as QuickPath Intercon-
nect (QPI), or similar connection 1295.

In one embodiment, the coprocessor 1245 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor, com-
pression engine, graphics processor, GPGPU, embedded pro-
cessor, or the like. In one embodiment, controller hub 1220
may include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 1210, 1215 in terms of a spectrum of metrics of
merit including architectural, microarchitectural, thermal,
power consumption characteristics, and the like.

In one embodiment, the processor 1210 executes instruc-
tions that control data processing operations of a general type.
Embedded within the instructions may be coprocessor
instructions. The processor 1210 recognizes these coproces-
sor instructions as being of a type that should be executed by
the attached coprocessor 1245. Accordingly, the processor
1210 issues these coprocessor instructions (or control signals
representing coprocessor instructions) on a coprocessor bus
or other interconnect, to coprocessor 1245. Coprocessor(s)
1245 accept and execute the received coprocessor instruc-
tions.

Referring now to FIG. 13, shown is a block diagram of a
first more specific exemplary system 1300 in accordance with
anembodiment of the present invention. As shown in FIG. 13,
multiprocessor system 1300 is a point-to-point interconnect
system, and includes a first processor 1370 and a second
processor 1380 coupled via a point-to-point interconnect
1350. Each of processors 1370 and 1380 may be some version
of the processor 1100. In one embodiment of the invention,
processors 1370 and 1380 are respectively processors 1210
and 1215, while coprocessor 1338 is coprocessor 1245. In
another embodiment, processors 1370 and 1380 are respec-
tively processor 1210 coprocessor 1245.

Processors 1370 and 1380 are shown including integrated
memory controller (IMC) units 1372 and 1382, respectively.
Processor 1370 also includes as part of'its bus controller units
point-to-point (P-P) interfaces 1376 and 1378; similarly, sec-
ond processor 1380 includes P-P interfaces 1386 and 1388.
Processors 1370, 1380 may exchange information via a point-
to-point (P-P) interface 1350 using P-P interface circuits
1378, 1388. As shown in FIG. 13, IMCs 1372 and 1382
couple the processors to respective memories, namely a
memory 1332 and a memory 1334, which may be portions of
main memory locally attached to the respective processors.

Processors 1370, 1380 may each exchange information
with a chipset 1390 via individual P-P interfaces 1352, 1354
using point to point interface circuits 1376, 1394, 1386, 1398.
Chipset 1390 may optionally exchange information with the
coprocessor 1338 via a high-performance interface 1339. In
one embodiment, the coprocessor 1338 is a special-purpose
processor, such as, for example, a high-throughput MIC pro-
cessor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or
the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 1390 may be coupled to a first bus 1316 via an
interface 1396. In one embodiment, first bus 1316 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
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as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

As shown in FIG. 13, various /O devices 1314 may be
coupled to first bus 1316, along with a bus bridge 1318 which
couples first bus 1316 to a second bus 1320. In one embodi-
ment, one or more additional processor(s) 1315, such as
coprocessors, high-throughput MIC processors, GPGPU’s,
accelerators (such as, e.g., graphics accelerators or digital
signal processing (DSP) units), field programmable gate
arrays, or any other processor, are coupled to first bus 1316. In
one embodiment, second bus 1320 may be a low pin count
(LPC) bus. Various devices may be coupled to a second bus
1320 including, for example, a keyboard and/or mouse 1322,
communication devices 1327 and a storage unit 1328 such as
a disk drive or other mass storage device which may include
instructions/code and data 1330, in one embodiment. Further,
an audio I/0 1324 may be coupled to the second bus 1320.
Note that other architectures are possible. For example,
instead of the point-to-point architecture of FIG. 13, a system
may implement a multi-drop bus or other such architecture.

Referring now to FIG. 14, shown is a block diagram of a
second more specific exemplary system 1400 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 13 and 14 bear like reference numerals, and certain
aspects of FIG. 13 have been omitted from FIG. 14 in order to
avoid obscuring other aspects of FIG. 14.

FIG. 14 illustrates that the processors 1370, 1380 may
include integrated memory and I/O control logic (“CL”") 1372
and 1382, respectively. Thus, the CL 1372, 1382 include
integrated memory controller units and include I/O control
logic. FIG. 14 illustrates that not only are the memories 1332,
1334 coupled to the CL 1372, 1382, but also that I/O devices
1414 are also coupled to the control logic 1372, 1382. Legacy
1/0 devices 1415 are coupled to the chipset 1390.

Referring now to FIG. 15, shown is a block diagram of a
SoC 1500 in accordance with an embodiment of the present
invention. Similar elements in FIG. 11 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. In FIG. 15, an interconnect unit(s) 1502
is coupled to: an application processor 1510 which includes a
set of one or more cores 202A-N and shared cache unit(s)
1106; a system agent unit 1110; a bus controller unit(s) 1116;
an integrated memory controller unit(s) 1114; a set or one or
more coprocessors 1520 which may include integrated graph-
ics logic, an image processor, an audio processor, and a video
processor; an static random access memory (SRAM) unit
1530; a direct memory access (DMA) unit 1532; and a display
unit 1540 for coupling to one or more external displays. Inone
embodiment, the coprocessor(s) 1520 include a special-pur-
pose processor, such as, for example, a network or commu-
nication processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combina-
tion of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or pro-
gram code executing on programmable systems comprising
at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

Program code, such as code 1330 illustrated in FIG. 13,
may be applied to input instructions to perform the functions
described herein and generate output information. The output
information may be applied to one or more output devices, in
known fashion. For purposes of this application, a processing
system includes any system that has a processor, such as, for
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example; a digital signal processor (DSP), a microcontroller,
an application specific integrated circuit (ASIC), or a micro-
processor.

The program code may be implemented in a high level
procedural or object oriented programming language to com-
municate with a processing system. The program code may
also be implemented in assembly or machine language, if
desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
O Processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of
disk including floppy disks, optical disks, compact disk read-
only memories (CD-ROMs), compact disk rewritable’s (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), phase change memory (PCM), mag-
netic or optical cards, or any other type of media suitable for
storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

Emulation (Including Binary Translation, Code Morphing,
Etc.)

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a target
instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary
translation including dynamic compilation), morph, emulate,
or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction con-
verter may be implemented in software, hardware, firmware,
ora combination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

FIG. 16 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruc-
tion converter, although alternatively the instruction con-
verter may be implemented in software, firmware, hardware,
or various combinations thereof. FIG. 16 shows a program in
a high level language 1602 may be compiled using an x86
compiler 1604 to generate x86 binary code 1606 that may be
natively executed by a processor with at least one x86 instruc-
tion set core 1616. The processor with at least one x86 instruc-
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tion set core 1616 represents any processor that can perform
substantially the same functions as an Intel processor with at
least one x86 instruction set core by compatibly executing or
otherwise processing (1) a substantial portion of the instruc-
tion set of the Intel x86 instruction set core or (2) object code
versions of applications or other software targeted to run on
an Intel processor with at least one x86 instruction set core, in
order to achieve substantially the same result as an Intel
processor with at least one x86 instruction set core. The x86
compiler 1604 represents a compiler that is operable to gen-
erate x86 binary code 1606 (e.g., object code) that can, with or
without additional linkage processing, be executed on the
processor with at least one x86 instruction set core 1616.
Similarly, FIG. 16 shows the program in the high level lan-
guage 1602 may be compiled using an alternative instruction
set compiler 1608 to generate alternative instruction set
binary code 1610 that may be natively executed by a proces-
sor without at least one x86 instruction set core 1614 (e.g., a
processor with cores that execute the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif. and/or that execute
the ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1612 is used to convert the
x86 binary code 1606 into code that may be natively executed
by the processor without an x86 instruction set core 1614.
This converted code is not likely to be the same as the alter-
native instruction set binary code 1610 because an instruction
converter capable of this is difficult to make; however, the
converted code will accomplish the general operation and be
made up of instructions from the alternative instruction set.
Thus, the instruction converter 1612 represents software,
firmware, hardware, or a combination thereof that, through
emulation, simulation or any other process, allows a proces-
sor or other electronic device that does not have an x86
instruction set processor or core to execute the x86 binary
code 1606.

Components, features, and details described for any of
FIGS.1-2 and 5-8 may also optionally be used in any of FIGS.
3-4. Moreover, components, features, and details described
herein for any of the apparatus described herein may also
optionally be used in and/or apply to any of the methods
described herein, which in embodiments may be performed
by and/or with such apparatus. Any of the processors
described herein may be included in any of the computer
systems, systems-on-chip (SoC) or other systems disclosed
herein. In some embodiments, the instructions may have fea-
tures or details of the instruction formats disclosed herein,
although this is not required.

In the description and claims, the terms “coupled” and/or
“connected,” along with their derivatives, may have be used.
These terms are not intended as synonyms for each other.
Rather, in embodiments, “connected” may be used to indicate
that two or more elements are in direct physical and/or elec-
trical contact with each other. “Coupled” may mean that two
or more elements are in direct physical and/or electrical con-
tact with each other. However, “coupled” may also mean that
two or more elements are not in direct contact with each other,
but yet still co-operate or interact with each other. For
example, an execution unit may be coupled with a register
and/or a decode unit through one or more intervening com-
ponents. In the figures, arrows are used to show connections
and couplings.

The term “and/or” may have been used. As used herein, the
term “and/or” means one or the other or both (e.g., A and/or B
means A or B or both A and B).

In the description above, specific details have been set forth
in order to provide a thorough understanding of the embodi-
ments. However, other embodiments may be practiced with-
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out some of these specific details. The scope of the invention
is not to be determined by the specific examples provided
above, but only by the claims below. In other instances, well-
known circuits, structures, devices, and operations have been
shown in block diagram form and/or without detail in order to
avoid obscuring the understanding of the description. Where
considered appropriate, reference numerals, or terminal por-
tions of reference numerals, have been repeated among the
figures to indicate corresponding or analogous elements,
which may optionally have similar or the same characteris-
tics, unless specified or clearly apparent otherwise.

Certain operations may be performed by hardware compo-
nents, or may be embodied in machine-executable or circuit-
executable instructions, that may be used to cause and/or
result in a machine, circuit, or hardware component (e.g., a
processor, potion of a processor, circuit, etc.) programmed
with the instructions performing the operations. The opera-
tions may also optionally be performed by a combination of
hardware and software. A processor, machine, circuit, or
hardware may include specific or particular circuitry or other
logic (e.g., hardware potentially combined with firmware
and/or software) is operable to execute and/or process the
instruction and store a result in response to the instruction.

Some embodiments include an article of manufacture (e.g.,
a computer program product) that includes a machine-read-
able medium. The medium may include a mechanism that
provides, for example stores, information in a form that is
readable by the machine. The machine-readable medium may
provide, or have stored thereon, an instruction or sequence of
instructions, that if and/or when executed by a machine are
operable to cause the machine to perform and/or result in the
machine performing one or operations, methods, or tech-
niques disclosed herein. The machine-readable medium may
store or otherwise provide one or more of the embodiments of
the instructions disclosed herein.

In some embodiments, the machine-readable medium may
include a tangible and/or non-transitory machine-readable
storage medium. For example, the tangible and/or non-tran-
sitory machine-readable storage medium may include a
floppy diskette, an optical storage medium, an optical disk, an
optical data storage device, a CD-ROM, a magnetic disk, a
magneto-optical disk, a read only memory (ROM), a pro-
grammable ROM (PROM), an erasable-and-programmable
ROM (EPROM), an electrically-erasable-and-programmable
ROM (EEPROM), a random access memory (RAM), a static-
RAM (SRAM), a dynamic-RAM (DRAM), a Flash memory,
a phase-change memory, a phase-change data storage mate-
rial, a non-volatile memory, a non-volatile data storage
device, a non-transitory memory, a non-transitory data stor-
age device, or the like. The non-transitory machine-readable
storage medium does not consist of a transitory propagated
signal.

Examples of suitable machines include, but are not limited
to, a general-purpose processor, a special-purpose processor,
an instruction processing apparatus, a digital logic circuit, an
integrated circuit, or the like. Still other examples of suitable
machines include a computing device or other electronic
device that includes a processor, instruction processing appa-
ratus, digital logic circuit, or integrated circuit. Examples of
such computing devices and electronic devices include, but
are not limited to, desktop computers, laptop computers,
notebook computers, tablet computers, netbooks, smart-
phones, cellular phones, servers, network devices (e.g., rout-
ers and switches.), Mobile Internet devices (MIDs), media
players, smart televisions, nettops, set-top boxes, and video
game controllers.
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Reference throughout this specification to “one embodi-
ment,” “an embodiment,” “one or more embodiments,”
“some embodiments,” for example, indicates that a particular
feature may be included in the practice of the invention but is
not necessarily required to be. Similarly, in the description
various features are sometimes grouped together in a single
embodiment, Figure, or description thereof for the purpose of
streamlining the disclosure and aiding in the understanding of
various inventive aspects. This method of disclosure, how-
ever, is not to be interpreted as reflecting an intention that the
invention requires more features than are expressly recited in
each claim. Rather, as the following claims reflect, inventive
aspects lie in less than all features of a single disclosed
embodiment. Thus, the claims following the Detailed
Description are hereby expressly incorporated into this
Detailed Description, with each claim standing on its own as
a separate embodiment of the invention.

2 <

Example Embodiments

The following examples pertain to further embodiments.
Specifics in the examples may be used anywhere in one or
more embodiments.

Example 1 is a processor or other apparatus that includes a
decode unit to decode an SM3 two round state word update
instruction. The SM3 two round state word update instruction
is to indicate one or more source packed data operands. The
one or more source packed data operands are to have eight
32-bit state words A, B;, C,, D, E, F, G, and H; that are to
correspond to a round (j) of an SM3 hash algorithm. The one
or more source packed data operands are also to have a set of
messages that are sufficient to evaluate two rounds of the SM3
hash algorithm. The processor also includes an execution unit
coupled with the decode unit. The execution unit is operable,
in response to the SM3 two round state word update instruc-
tion, to store one or more result packed data operands, in one
or more destination storage locations that are to be indicated
by the SM3 two round state word update instruction. The one
or more result packed data operands to have at least four
two-round updated 32-bit state words A, ,,, B,,,, E,,,, and
F,,, that are to correspond to a round (j+2) of the SM3 hash
algorithm.

Example 2 includes the processor of Example 1, in which
the execution unit is operable, in response to the instruction,
to store the one or more result packed data operands that are
to have only the four two-round updated 32-bit state words
Aj+25 Bj+25 Ej+25 and Fj+2'

Example 3 includes the processor of Example 1, in which
the execution unit is operable, in response to the instruction,
to store the one or more result packed data operands that are
to have eight two-round updated 32-bit state words A, ,, B, »,
Cii2s D0, Bo, Fry, €y, and H,, that are to correspond to
the round (j+2) of the SM3 hash algorithm.

Example 4 includes the processor of Example 1, in which
the decode unit is to decode the instruction that is to indicate
a first source packed data operand that is to have the 32-bit
state words A, B, B, and F,. The instruction is also to indicate
a second source packed data operand that is to have the 32-bit
state words C;, D;, G, and H,.

Example 5 includes the processor of Example 4, in which
execution unit is operable, in response to the instruction, to
store a single result packed data operand that is to have only

the four two-round updated 32-bit state words A_,, B, ,,
B, s andF, .

Example 6 includes the processor of Example 5, in which
execution unit is operable, in response to the SM3 two round
state word update instruction, to store the single result packed
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data operand in a storage location that is implicitly to be used
for both the single result packed data operand and the second
source packed data operand.

Example 7 includes the processor of Example 5, in which
the decode unit is to decode a second instruction that is to
indicate a source packed data operand that is to have the 32-bit
state words A, B, B, and F,. The processor is operable, in
response to the second instruction, to store a result packed
data operand in a destination storage location that is to be
indicated by the second instruction. The result packed data
operand is to have four two-round updated 32-bit state words
Cjs25 Dyys Cppp, and H,, , that are to correspond to the round
(j+2) of the SM3 hash algorithm.

Example 8 includes the processor of any one of Examples
1 to 7, in which the decode unit is to decode the instruction
that is to indicate the one or more source packed data oper-
ands that are to have one of: four 32-bit messages W, W, ,,
W4, and W, 5; and four 32-bit messages W, W, W', and
Wi

Example 9 includes the processor of any one of Examples
1 to 7, in which the decode unit is to decode the instruction
that is to indicate a round number.

Example 10 includes the processor of Example 9, in which
the decode unit is to decode the instruction that is to have an
immediate to indicate the round number.

Example 11 includes the processor of any one of Examples
1 to 7, in which the decode unit is to decode the instruction
that is to indicate three 128-bit source packed data operands
that are to have the eight 32-bit state words A, B,, C,, D, B,
F;, G;, and H, and the set of messages that are sufficient to
evaluate the two rounds of the SM3 hash algorithm.

Example 12 includes the processor of Example 11, in
which the decode unit is to decode the instruction that is to
explicitly specify two of the three 128-bit source packed data
operands, and implicitly indicate one of the three 128-bit
source packed data operands. Also, it is to be implicit to use a
storage location both for one of the three 128-bit source
packed data operands and also to store a result packed data
operand, and in which the processor has a plurality of 256-bit
packed data registers.

Example 13 includes the processor of any one of Examples
1 to 7, in which logic of the execution unit to be used to
implement at least one of an FF, function and GG;, function of
the SM3 hash algorithm is also to be used to implement at
least one of a Maj function and a Ch function of a Secure Hash
Algorithm.

Example 14 includes the processor of any one of Examples
1 to 7, in which the execution unit is operable, in response to
the instruction, during each of two rounds, to perform opera-
tions including: evaluating an FF, Boolean function; evaluat-
ing a GG, Boolean function; and evaluating a P, permutation
function.

Example 15 is a method in a processor that includes receiv-
ing an SM3 two round state word update instruction indicat-
ing one or more source packed data operands. The one or
more source packed data operands have eight 32-bit state
words A, B,,C, D, B, F ,G;,and H, for a round (j) of an SM3
hash algorithm, and the one or more source packed data
operands having four messages to evaluate two rounds of the
SM3 hash algorithm. The method also includes storing one or
more result packed data operands, in one or more destination
storage locations indicated by the SM3 two round state word
update instruction, in response to the SM3 two round state
word update instruction. The one or more result packed data
operands have at least four two-round updated 32-bit state
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words A ., B,,,, B ,,, and F,, ,, which have been updated by
the two rounds of the SM3 hash algorithm relative to A, B,
B, and F,

Example 16 includes the method of Example 15, in which
receiving includes receiving the instruction that indicates a
round number and that indicates the one or more source
packed data operands that have one of: four 32-bit messages
W, W, W, ,,and W, 5 and four 32-bit messages W, W,
W, and W' .

Example 17 includes the method of any one of Examples
15 and 16, in which storing includes storing the one or more
result packed data operands that have eight two-round
updated 32-bit state words A, B,,», C,,5, D5, Bio, By,
G, and H,, ,, which have been updated by the two rounds of
the SM3 hash algorithm.

Example 18 includes the method of any one of Examples
15 and 16, in which receiving includes receiving the instruc-
tion that indicates a first source packed data operand having
the 32-bit state words A, B, and F;, and indicates a second
source packed data operand having the 32-bit state words C,,
D, G, and H,.

Example 19 includes the method of any one of Examples
15 and 18, in which storing includes storing a single result
packed data operand that has only the four two-round updated
32-bit state words A,,,, B, 5, B, 5, and F .

Example 20 includes the method of any one of Examples
15, 18, and 19, further including receiving a second instruc-
tion that indicates a source packed data operand having the
32-bit state words A, B;, E;, and F,. The method further
includes storing a result packed data operand, in a destination
storage location indicated by the second instruction, in
response to the second instruction. The result packed data
operand has four two-round updated 32-bit state words C,,
D>, G;,,, and H,, , that are to correspond to a round (j+2) of
the SM3 hash algorithm.

Example 21 is a system to process instructions that
includes an interconnect and a processor coupled with the
interconnect. The processor is to receive a two round state
word update instruction for a hash algorithm. The hash algo-
rithm utilizes a parameter T, having a hexadecimal value of
79cc4519 for a first set of rounds and a hexadecimal value of
79cc4519 for a second set of rounds. The two round state
word update instruction is to indicate one or more source
packed data operands. The one or more source packed data
operands are to have eight 32-bit state words A, B,,C,, D, B,
F,, C;, and H, that are to correspond to a round (j) of the hash
algorithm, and the one or more source packed data operands
to have a set of messages that are sufficient to evaluate two
rounds of the hash algorithm. The processor, in response to
the two round state word update instruction, is to store one or
more result packed data operands, in one or more destination
storage locations that are to be indicated by the two round
state word update instruction. The one or more result packed
data operands to have at least four state words A, ,,, B, 5, E, .,
and F, ,, which respectively have been updated by two rounds
of the hash algorithm relative to the four 32-bit state words A,
B,, E,, and F;. The system also includes a dynamic random
access memory (DRAM) coupled with the interconnect. The
DRAM stores a set of instructions to implement the hash
algorithm. The set of instructions, when executed by the
processor, to cause the processor to perform operations
including using A, B, B, and F, to generate C,, 5, D, », G5,
and H ,,, which respectively have been updated by two
rounds of the hash algorithm relative to C;, D,, G,, and H,.

Example 22 includes the system of Example 21, in which
using the A, B, B, and I, to generate the Cj+2, Dj+2, Gj+2 is
responsive to a single instruction.
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Example 23 is an article of manufacture including a non-
transitory machine-readable storage medium. The non-tran-
sitory machine-readable storage medium stores an SM3 two
round state word update instruction. The SM3 two round state
word update instruction is to indicate one or more source
packed data operands. The one or more source packed data
operands are to have eight 32-bit state words A, B,,C,, D, B,
F,.G,,andH, foraround (j) of an SM3 hash algorithm, and the
one or more source packed data operands to have four mes-
sages sufficient to evaluate two rounds of the SM3 hash
algorithm. The SM3 two round state word update instruction
if executed by a machine is to cause the machine to perform
operations including generating at least four two-round
updated 32-bit state words A, B,,,, E,,,, and F,,, which
respectively have been updated by two rounds of the SM3
hash algorithm relative to A;, B;, E;, and F,. The operations
also include storing the at least four 32-bit state words A,
B,.s, Bj,s, and T, in one or more destination storage loca-
tions that are to be indicated by the SM3 two round state word
update instruction.

Example 24 includes the article of manufacture of
Example 23, in which storing includes storing the at least four
32-bit state words A;,,, B;,,, B,,,, and F,,, in a 128-bit reg-
ister, and in which the storage medium further includes an
instruction that if executed by the machine is to cause the
machine to perform operations including generating four

two-round updated 32-bit state words C,,,, D,,,, G,,,, and
H,,, from four 32-bit state words A;, B;, B, and F,.

Example 25 includes a processor or other apparatus that is
operative to perform the method of any one of Examples
15-20.

Example 26 includes a processor or other apparatus that
includes means for performing the method of any one of
Examples 15-20.

Example 27 includes a processor that includes any combi-
nation of modules, units, logic, circuitry, and means to per-
form the method of any one of Examples 15-20.

Example 28 includes an article of manufacture that
includes an optionally non-transitory machine-readable
medium that optionally stores or otherwise provides an
instruction that if and/or when executed by a processor, com-
puter system, or other machine is operative to cause the
machine to perform the method of any one of Examples
15-20.

Example 29 includes a computer system or other electronic
device including an interconnect, the processor of any one of
Examples 1-14 coupled with the interconnect, and at least one
component coupled with the interconnect that is selected
from a dynamic random access memory (DRAM), a network
interface, a graphics chip, a wireless communications chip, a
Global System for Mobile Communications (GSM) antenna,
a phase change memory, and a video camera.

Example 30 includes a processor or other apparatus sub-
stantially as described herein.

Example 31 includes a processor or other apparatus that is
operative to perform any method substantially as described
herein.

Example 32 includes a processor or other apparatus includ-
ing means for performing any method substantially as
described herein.

Example 33 includes a processor or other apparatus that is
operative to perform any SM3 hash algorithm acceleration
instruction substantially as described herein.

Example 34 includes a processor or other apparatus includ-
ing means for performing any SM3 hash algorithm accelera-
tion instruction substantially as described herein.
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Example 35 includes a processor or other apparatus includ-
ing a decode unit that is operable to decode instructions of a
first instruction set. The decode unit is to receive one or more
instructions that emulate a first instruction, which may be any
of'the SM3 hash algorithm acceleration instructions substan-
tially as disclosed herein, and which is to be of a second
instruction set. The processor or other apparatus also includes
one or more execution units coupled with the decode unit to
execute the one or more instructions of the first instruction set.
The one or more execution units in response to the one or
more instructions of the first instruction set are operable to
store a result in a destination. The result may include any of
the results substantially as disclosed herein for the first
instruction.

Example 36 includes a computer system or other electronic
device that includes a processor having a decode unit that is
operable to decode instructions of a first instruction set, and
having one or more execution units. The computer system
also includes a storage device coupled to the processor. The
storage device is to store a first instruction, which may be any
of'the SM3 hash algorithm acceleration instructions substan-
tially as disclosed herein, and which is to be of a second
instruction set. The storage device is also to store instructions
to convert the first instruction into one or more instructions of
the first instruction set. The one or more instructions of the
first instruction set, when executed by the processor, are oper-
able to cause the processor to store a result in a destination.
The result may include any of the results substantially as
disclosed herein for the first instruction.

What is claimed is:

1. A processor comprising:

a decode unit to decode an SM3 two round state word
update instruction, the SM3 two round state word update
instruction to indicate one or more source packed data
operands, the one or more source packed data operands
to have eight 32-bit state words A, B, C, D, E, F, G,

and H; that are to correspond to a round (j) of an SM3
hash algorithm, and the one or more source packed data
operands to have a set of messages that are sufficient to
evaluate two rounds of the SM3 hash algorithm; and
an execution unit coupled with the decode unit, the execu-
tion unit configured, in response to the SM3 two round
state word update instruction, to store one or more result
packed data operands, in one or more destination storage
locations that are to be indicated by the SM3 two round
state word update instruction, the one or more result
packed data operands to have at least four two-round
updated 32-bit state words A, B,,,, B ,,, and I, that
are to correspond to a round (j+2) of the SM3 hash
algorithm.
2. The processor of claim 1, wherein the execution unit is
configured, in response to the instruction, to store the one or
more result packed data operands that are to have only the

four two-round updated 32-bit state words A, ,,, B,,,, E,,»,
andF .

3. The processor of claim 1, wherein the execution unit is
configured, in response to the instruction, to store the one or
more result packed data operands that are to have eight two-
round updated 32-bit state words A, B;,», C,,5, D;5, B,
F,,»,G;,5,andH,,, that are to correspond to the round (j+2) of
the SM3 hash algorithm.

4. The processor of claim 1, wherein the decode unit is to
decode the instruction that is to indicate a first source packed
data operand that is to have the 32-bit state words A, B, B,
and F;, and is to indicate a second source packed data operand
that is to have the 32-bit state words C,, D,, G;, and H;.
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5. The processor of claim 4, wherein the execution unit is
configured, in response to the instruction, to store a single
result packed data operand that is to have only the four two-
round updated 32-bit state words A, 5, B,,,, E,,,, and F, .

6. The processor of claim 5, wherein the execution unit is
configured, in response to the SM3 two round state word
update instruction, to store the single result packed data oper-
and in a storage location that is implicitly to be used for both
the single result packed data operand and the second source
packed data operand.

7. The processor of claim 5, wherein the decode unit is to
decode a second instruction that is to indicate a source packed
data operand that is to have the 32-bit state words A, B, E;
and F, and wherein the processor is configured, in response to
the second instruction, to store a result packed data operand in
a destination storage location that is to be indicated by the
second instruction, the result packed data operand to have
four two-round updated 32-bit state words C,,,, D,,, G,,»,
and H,, , that are to correspond to the round (j+2) of the SM3
hash algorithm.

8. The processor of claim 1, wherein the decode unit is to
decode the instruction that is to indicate the one or more
source packed data operands that are to have one of:

four 32-bit messages W, W, ,, W, ,, and W ;; and
four 32-bit messages W, W, ,, W', and W', .

9. The processor of claim 1, wherein the decode unit is to
decode the instruction that is to indicate a round number.

10. The processor of claim 9, wherein the decode unit is to
decode the instruction that is to have an immediate to indicate
the round number.

11. The processor of claim 1, wherein the decode unit is to
decode the instruction that is to indicate three 128-bit source
packed data operands that are to have the eight 32-bit state
words A, B, C;, D, B, F, G;, and H; and the set of messages
that are sufficient to evaluate the two rounds of the SM3 hash
algorithm.

12. The processor of claim 11, wherein the decode unit is to
decode the instruction that is to explicitly specify two of the
three 128-bit source packed data operands, and implicitly
indicate one ofthe three 128-bit source packed data operands,
and wherein it is to be implicit to use a storage location both
for one of the three 128-bit source packed data operands and
also to store a result packed data operand, and wherein the
processor has a plurality of 256-bit packed data registers.

13. The processor of claim 1, wherein logic of the execu-
tion unit to be used to implement at least one of an FF,
function and GG, function of the SM3 hash algorithm is also
to be used to implement at least one ofa Maj functionand a Ch
function of a Secure Hash Algorithm.

14. The processor of claim 1, wherein the execution unit is
configured, in response to the instruction, during each of two
rounds, to perform operations comprising:

evaluating an FF3 Boolean function; evaluating a GG3

Boolean function; and evaluating a PO permutation func-
tion.

15. A method in a processor comprising:

receiving an SM3 two round state word update instruction

indicating one or more source packed data operands, the
one or more source packed data operands having eight
32-bit state words A, B,, C,, D, B, F;, G;, and H, for a
round (j) of an SM3 hash algorithm, and the one or more
source packed data operands having four messages to
evaluate two rounds of the SM3 hash algorithm; and
storing one or more result packed data operands, in one or
more destination storage locations indicated by the SM3
two round state word update instruction, in response to
the SM3 two round state word update instruction, the
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one or more result packed data operands having at least
four two-round updated 32-bit state words A, B, ,,
E,,», and F,,,, which have been updated by the two
rounds of the SM3 hash algorithm relative to A, B;, B,
and F,.
16. The method of claim 15, wherein receiving comprises
receiving the instruction that indicates a round number and
that indicates the one or more source packed data operands
that have one of:
four 32-bit messages W,
four 32-bit messages W, W, ,, W' and W', .
17. The method of claim 15, wherein storing comprises
storing the one or more result packed data operands that have
eight two-round updated 32-bit state words A, ,, B,,,, C,,»,
D5, Bipo, Flus, Gip, and Hy, 5, which have been updated by
the two rounds of the SM3 hash algorithm.
18. The method of claim 15, wherein receiving comprises
receiving the instruction that indicates a first source packed
data operand having the 32-bit state words A, B, E, and F,
and indicates a second source packed data operand having the
32-bit state words C;, D,, G,, and H..
19. The method of claim 18, wherein storing comprises
storing a single result packed data operand that has only the
four two-round updated 32-bit state words A, ,, B, .5, E .,
and F,,,.
20. The method of claim 19, further comprising:
receiving a second instruction that indicates a source
packed data operand having the 32-bit state words A, B,
E,and F; and

storing a result packed data operand, in a destination stor-
age location indicated by the second instruction, in
response to the second instruction, the result packed data
operand having four two-round updated 32-bit state
words C;,,, D;,5, Gy, 5,and H,,, that are to correspond to
a round (j+2) of the SM3 hash algorithm.

21. A system to process instructions comprising:

an interconnect;

aprocessor coupled with the interconnect, the processor to

receive a two round state word update instruction for an
SM3 hash algorithm, wherein the SM3 hash algorithm
utilizes a parameter T, having a hexadecimal value of
79cc4519 for a first set of rounds and a hexadecimal
value of 79¢c4519 for a second set of rounds, the two
round state word update instruction to indicate one or
more source packed data operands, the one or more
source packed data operands to have eight 32-bit state
words A, B,, C,, D, B, F, G,, and H, that are to corre-
spond to a round (j) of the SM3 hash algorithm, and the
one or more source packed data operands to have a set of
messages that are sufficient to evaluate two rounds of the
SM3 hash algorithm, the processor, in response to the
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two round state word update instruction, to store one or
more result packed data operands, in one or more desti-
nation storage locations that are to be indicated by the
two round state word update instruction,
the one or more result packed data operands to have at least
four state words A, B, ,, B, ,, and F, ,, which respec-
tively have been updated by two rounds of the SM3 hash
algorithm relative to the four 32-bit state words A, B,
E,, and F; and
a dynamic random access memory (DRAM) coupled with
the interconnect, the DRAM storing a set of instructions
to implement the SM3 hash algorithm, the set of instruc-
tions, when executed by the processor, to cause the pro-
cessor to perform operations comprising:
using A, B, B, and F, to generate C,,,, D, 5, G,, 5, and H, 5,
which respectively have been updated by two rounds of
the SM3 hash algorithm relative to C;, D;, G;, and H,.

22. The system of claim 21, wherein using the A, B, B,
and F, to generate the C,,,, D, ,, G;,,, and H,,, is responsive
to a single instruction.

23. An article of manufacture comprising a non-transitory
machine-readable storage medium, the non-transitory
machine-readable storage medium storing an SM3 two round
state word update instruction,

the SM3 two round state word update instruction to indi-

cate one or more source packed data operands, the one or
more source packed data operands to have eight 32-bit

state words A, B,,C,, D, B, F, G;, and H, foraround (j)
of an SM3 hash algorithm, and the one or more source
packed data operands to have four messages sufficient to
evaluate two rounds of the SM3 hash algorithm, and the
SM3 two round state word update instruction if executed
by a machine is to cause the machine to perform opera-
tions comprising:

generating at least four two-round updated 32-bit state

words A5, B,, 5, E,,,, and F,,,, which respectively have
been updated by two rounds of the SM3 hash algorithm
relative to A, B, B, and F; and

storing the at least four 32-bit state words A ,,. B, . E .,

and F, , in one or more destination storage locations that
are to be indicated by the SM3 two round state word
update instruction.

24. The article of manufacture of claim 23, wherein storing
comprises storing the at least four 32-bit state words A, .,
B, Bipo, and ), in a 128-bit register, and wherein the
storage medium further comprises an instruction that if
executed by the machine is to cause the machine to perform
operations comprising generating four two-round updated
32-bit state words C;,,, D, 5, G, ,, and H,, , from four 32-bit
state words A, B, E,, and F.
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UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 29,317,719 B2 Page 1of1
APPLICATION NO. : 14/477552

DATED - April 19, 2016

INVENTOR(S) : Shay Gueron et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In column 34, lines 13-14, in claim 7, delete “E; and” and insert -- E;, and --, therefor.
In column 34, line 53, in claim 14, delete “FF3” and insert -- FF; --, therefor.

In column 34, line 53, in claim 14, delete “GG3” and insert -- GG; --, therefor.

In column 34, line 54, in claim 14, delete “P0” and insert -- P, --, therefor.

In column 36, line 15, in claim 21, delete “E; and™ and insert -- E;, and --, therefor.

Signed and Sealed this
Nineteenth Day of July, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office



